Deep learning based data-driven model for detecting time-delay water quality indicators of wastewater treatment plant influent

可解释性 计算机科学 水质 化学需氧量 人工智能 污水处理 人工神经网络 机器学习 生化需氧量 深度学习 废水 环境科学 工艺工程 环境工程 工程类 生态学 生物
作者
Yituo Zhang,Chaolin Li,Hengpan Duan,Kefen Yan,Jihong Wang,Wenhui Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:467: 143483-143483 被引量:73
标识
DOI:10.1016/j.cej.2023.143483
摘要

Rapid and accurate detection of time-delayed water quality indicators (WQIs) is the key to achieving fast feedback regulation of wastewater treatment plants (WWTPs) that enables its energy-efficient operation and high tolerance towards shock sewage loads. However, advanced oxidation methods are costly, and data-driven modeling methods based on traditional machine learning algorithms for detecting time-delayed WQIs have limited detection accuracy. This work develops deep learning models based on long short-term memory (LSTM) neural networks to detect time-delayed WQIs in WWTPs intake accurately. The lack of interpretability of the deep learning models hampers the optimization of the developed LSTM models in applications. Therefore, a global sensitivity analysis (GSA) based on Shapley additive explanations (SHAP) is performed to quantify the contribution of the input indicators to detection results of the developed LSTM models. The direct contributions provide the basis for optimizing the input indicators to achieve more cost-effective modeling detection. In the case study, the developed LSTM models achieved good accuracy (R2 of 0.9141, 0.9239, and 0.9040, respectively) in detecting chemical oxygen demand, total nitrogen, and total phosphorus in the influent of a WWTP, outperforming the four types of baseline models. According to the SHAP values, the contributions of dissolved oxygen, turbidity, and ammonia nitrogen to the above detection targets are always in the top third of all input indicators, which are more outstanding than meteorological indicators. Removing the indicator with the smallest SHAP value reduces the build and run costs of the models with minimal loss of detection accuracy. Combining deep learning and GSA to detect WWTPs influent is a novel and effective attempt. This attempt provides a more sustainable solution for rapid and accurate detection of time-delayed WQIs, which drives WWTPs' operation in an intelligent, clean, and safe direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
嘿嘿嘿发布了新的文献求助10
刚刚
刚刚
1秒前
小肥鑫发布了新的文献求助10
2秒前
3秒前
scoot完成签到 ,获得积分10
3秒前
wjx关闭了wjx文献求助
3秒前
3秒前
蛋挞完成签到,获得积分20
3秒前
hhh完成签到 ,获得积分10
5秒前
爱学习发布了新的文献求助10
5秒前
张张发布了新的文献求助10
5秒前
wangsai0532完成签到,获得积分10
6秒前
6秒前
SciGPT应助1111111111111111采纳,获得10
6秒前
6秒前
Aaron完成签到 ,获得积分10
7秒前
xx完成签到,获得积分10
7秒前
嘿嘿嘿发布了新的文献求助10
7秒前
晗晗发布了新的文献求助10
8秒前
8秒前
研友_VZG7GZ应助小肥鑫采纳,获得10
8秒前
万能图书馆应助Joey采纳,获得10
10秒前
10秒前
11秒前
香蕉觅云应助EmmaLin采纳,获得10
11秒前
11秒前
77发布了新的文献求助10
12秒前
13秒前
FashionBoy应助泠漓采纳,获得10
13秒前
13秒前
13秒前
于大强完成签到,获得积分10
14秒前
共享精神应助晗晗采纳,获得10
15秒前
终抵星空发布了新的文献求助10
15秒前
轻松的妍发布了新的文献求助10
15秒前
深情安青应助嘿嘿嘿采纳,获得10
15秒前
搜集达人应助lvlv采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676