Deep learning based data-driven model for detecting time-delay water quality indicators of wastewater treatment plant influent

可解释性 计算机科学 水质 化学需氧量 人工智能 污水处理 人工神经网络 机器学习 生化需氧量 深度学习 废水 环境科学 工艺工程 环境工程 工程类 生态学 生物
作者
Yituo Zhang,Chaolin Li,Hengpan Duan,Kefen Yan,Jihong Wang,Wenhui Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:467: 143483-143483 被引量:70
标识
DOI:10.1016/j.cej.2023.143483
摘要

Rapid and accurate detection of time-delayed water quality indicators (WQIs) is the key to achieving fast feedback regulation of wastewater treatment plants (WWTPs) that enables its energy-efficient operation and high tolerance towards shock sewage loads. However, advanced oxidation methods are costly, and data-driven modeling methods based on traditional machine learning algorithms for detecting time-delayed WQIs have limited detection accuracy. This work develops deep learning models based on long short-term memory (LSTM) neural networks to detect time-delayed WQIs in WWTPs intake accurately. The lack of interpretability of the deep learning models hampers the optimization of the developed LSTM models in applications. Therefore, a global sensitivity analysis (GSA) based on Shapley additive explanations (SHAP) is performed to quantify the contribution of the input indicators to detection results of the developed LSTM models. The direct contributions provide the basis for optimizing the input indicators to achieve more cost-effective modeling detection. In the case study, the developed LSTM models achieved good accuracy (R2 of 0.9141, 0.9239, and 0.9040, respectively) in detecting chemical oxygen demand, total nitrogen, and total phosphorus in the influent of a WWTP, outperforming the four types of baseline models. According to the SHAP values, the contributions of dissolved oxygen, turbidity, and ammonia nitrogen to the above detection targets are always in the top third of all input indicators, which are more outstanding than meteorological indicators. Removing the indicator with the smallest SHAP value reduces the build and run costs of the models with minimal loss of detection accuracy. Combining deep learning and GSA to detect WWTPs influent is a novel and effective attempt. This attempt provides a more sustainable solution for rapid and accurate detection of time-delayed WQIs, which drives WWTPs' operation in an intelligent, clean, and safe direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
evefei发布了新的文献求助10
2秒前
科研通AI5应助lm采纳,获得10
3秒前
hao发布了新的文献求助20
3秒前
5秒前
5秒前
yolo发布了新的文献求助10
5秒前
6秒前
共享精神应助谦让含玉采纳,获得10
6秒前
想见你关注了科研通微信公众号
6秒前
兴奋的平松完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
智博36发布了新的文献求助10
9秒前
10秒前
11秒前
小蔡完成签到,获得积分10
13秒前
14秒前
makabaka发布了新的文献求助10
14秒前
14秒前
SciGPT应助科研通管家采纳,获得10
15秒前
l玖应助科研通管家采纳,获得10
15秒前
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
久旱逢甘霖完成签到 ,获得积分10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得20
15秒前
大个应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
大个应助科研通管家采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991995
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260801
捐赠科研通 3272413
什么是DOI,文献DOI怎么找? 1805820
邀请新用户注册赠送积分活动 882665
科研通“疑难数据库(出版商)”最低求助积分说明 809425