Deep learning based data-driven model for detecting time-delay water quality indicators of wastewater treatment plant influent

可解释性 计算机科学 水质 化学需氧量 人工智能 污水处理 人工神经网络 机器学习 生化需氧量 深度学习 废水 环境科学 工艺工程 环境工程 工程类 生态学 生物
作者
Yituo Zhang,Chaolin Li,Hengpan Duan,Kefen Yan,Jihong Wang,Wenhui Wang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:467: 143483-143483 被引量:39
标识
DOI:10.1016/j.cej.2023.143483
摘要

Rapid and accurate detection of time-delayed water quality indicators (WQIs) is the key to achieving fast feedback regulation of wastewater treatment plants (WWTPs) that enables its energy-efficient operation and high tolerance towards shock sewage loads. However, advanced oxidation methods are costly, and data-driven modeling methods based on traditional machine learning algorithms for detecting time-delayed WQIs have limited detection accuracy. This work develops deep learning models based on long short-term memory (LSTM) neural networks to detect time-delayed WQIs in WWTPs intake accurately. The lack of interpretability of the deep learning models hampers the optimization of the developed LSTM models in applications. Therefore, a global sensitivity analysis (GSA) based on Shapley additive explanations (SHAP) is performed to quantify the contribution of the input indicators to detection results of the developed LSTM models. The direct contributions provide the basis for optimizing the input indicators to achieve more cost-effective modeling detection. In the case study, the developed LSTM models achieved good accuracy (R2 of 0.9141, 0.9239, and 0.9040, respectively) in detecting chemical oxygen demand, total nitrogen, and total phosphorus in the influent of a WWTP, outperforming the four types of baseline models. According to the SHAP values, the contributions of dissolved oxygen, turbidity, and ammonia nitrogen to the above detection targets are always in the top third of all input indicators, which are more outstanding than meteorological indicators. Removing the indicator with the smallest SHAP value reduces the build and run costs of the models with minimal loss of detection accuracy. Combining deep learning and GSA to detect WWTPs influent is a novel and effective attempt. This attempt provides a more sustainable solution for rapid and accurate detection of time-delayed WQIs, which drives WWTPs' operation in an intelligent, clean, and safe direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
定烜完成签到,获得积分10
刚刚
丘比特应助vanshaw.vs采纳,获得10
2秒前
杭亦竹完成签到,获得积分10
5秒前
tramp应助七星龙渊采纳,获得20
6秒前
Shaynin完成签到,获得积分10
7秒前
求大佬帮助完成签到,获得积分10
7秒前
HaoDeng发布了新的文献求助10
8秒前
姚美丽完成签到 ,获得积分10
9秒前
9秒前
cinn完成签到 ,获得积分10
10秒前
通达完成签到,获得积分10
10秒前
10秒前
He完成签到,获得积分10
11秒前
喜静完成签到 ,获得积分10
11秒前
柒月完成签到 ,获得积分10
12秒前
YQT完成签到 ,获得积分10
13秒前
lunar发布了新的文献求助10
16秒前
16秒前
joyce完成签到,获得积分10
17秒前
17秒前
19秒前
HaoDeng完成签到,获得积分10
19秒前
心心发布了新的文献求助10
20秒前
运敬完成签到 ,获得积分10
22秒前
khaosyi完成签到 ,获得积分10
22秒前
Bismarck发布了新的文献求助10
24秒前
万能的土豆完成签到 ,获得积分10
27秒前
大模型应助DUTlh采纳,获得10
27秒前
科研通AI2S应助豪的花花采纳,获得10
28秒前
虚心的仙人掌完成签到,获得积分10
28秒前
courage完成签到 ,获得积分10
28秒前
30秒前
思维完成签到,获得积分10
30秒前
31秒前
31秒前
Lucas应助科研通管家采纳,获得10
32秒前
共享精神应助科研通管家采纳,获得10
32秒前
充电宝应助科研通管家采纳,获得10
33秒前
须臾发布了新的文献求助30
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165255
求助须知:如何正确求助?哪些是违规求助? 2816291
关于积分的说明 7912153
捐赠科研通 2475954
什么是DOI,文献DOI怎么找? 1318458
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388