Spatial–temporal features-based EEG emotion recognition using graph convolution network and long short-term memory

脑电图 模式识别(心理学) 计算机科学 Softmax函数 人工智能 相关性 支持向量机 图形 卷积(计算机科学) 语音识别 深度学习 数学 人工神经网络 心理学 理论计算机科学 精神科 几何学
作者
Fa Zheng,Bin Hu,Xiangwei Zheng,Yuang Zhang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:44 (6): 065002-065002 被引量:7
标识
DOI:10.1088/1361-6579/acd675
摘要

Abstract Objective . Emotion recognition on the basis of electroencephalography (EEG) signals has received a significant amount of attention in the areas of cognitive science and human–computer interaction (HCI). However, most existing studies either focus on one-dimensional EEG data, ignoring the relationship between channels, or only extract time–frequency features while not involving spatial features. Approach . We develop spatial–temporal features-based EEG emotion recognition using a graph convolution network (GCN) and long short-term memory (LSTM), named ERGL. First, the one-dimensional EEG vector is converted into a two-dimensional mesh matrix, so that the matrix configuration corresponds to the distribution of brain regions at EEG electrode locations, thus to represent the spatial correlation between multiple adjacent channels in a better way. Second, the GCN and LSTM are employed together to extract spatial–temporal features; the GCN is used to extract spatial features, while LSTM units are applied to extract temporal features. Finally, a softmax layer is applied to emotion classification. Main results . Extensive experiments are conducted on the A Dataset for Emotion Analysis using Physiological Signals (DEAP) and the SJTU Emotion EEG Dataset (SEED). The classification results of accuracy, precision, and F-score for valence and arousal dimensions on DEAP achieved 90.67% and 90.33%, 92.38% and 91.72%, and 91.34% and 90.86%, respectively. The accuracy, precision, and F-score of positive, neutral, and negative classifications reached 94.92%, 95.34%, and 94.17%, respectively, on the SEED dataset. Significance . The above results demonstrate that the proposed ERGL method is encouraging in comparison to state-of-the-art recognition research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
赵大大发布了新的文献求助10
2秒前
3秒前
方可新发布了新的文献求助10
3秒前
3秒前
酷波er应助圆周率采纳,获得10
3秒前
123456发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
华仔应助平淡的楼房采纳,获得10
5秒前
丰D发布了新的文献求助10
5秒前
5秒前
6秒前
Nathan完成签到 ,获得积分10
6秒前
感动语蝶发布了新的文献求助10
6秒前
6秒前
7秒前
H-C发布了新的文献求助10
7秒前
刻苦若冰完成签到,获得积分10
8秒前
zero发布了新的文献求助10
8秒前
8秒前
科研通AI5应助胡模蘋大猪采纳,获得10
8秒前
ekswai发布了新的文献求助30
9秒前
仙子狗尾巴花完成签到,获得积分10
9秒前
rosalieshi应助无一采纳,获得200
9秒前
李健应助迅速的立果采纳,获得10
9秒前
9秒前
Blueyi发布了新的文献求助10
9秒前
吸金兽发布了新的文献求助10
10秒前
赘婿应助bluelu采纳,获得10
10秒前
酷波er应助清脆的映天采纳,获得10
11秒前
Keven完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542284
求助须知:如何正确求助?哪些是违规求助? 3119546
关于积分的说明 9339847
捐赠科研通 2817418
什么是DOI,文献DOI怎么找? 1549111
邀请新用户注册赠送积分活动 722015
科研通“疑难数据库(出版商)”最低求助积分说明 712918