生物降解
化学
环境化学
腐植酸
红球菌
污染物
矿化(土壤科学)
微生物联合体
生物化学
细菌
有机化学
微生物
生物
酶
氮气
遗传学
肥料
作者
Jiaohui Xia,Yan Li,Xinbai Jiang,Dan Chen,Jinyou Shen
标识
DOI:10.1016/j.jhazmat.2023.131426
摘要
Electricity-stimulated anaerobic system (ESAS) has shown great potential for halogenated organic pollutants removal. Exogenous redox mediators can improve electron transfer efficiency to enhance pollutants removal in ESAS. In this study, humic acid (HA), a low-cost electron mediator, was added into ESAS to enhance the simultaneous reductive debromination and mineralization of 4-bromophenol (4-BP). Results showed that the highest 4-BP removal efficiency at 48 h was 95.43 % with HA dosage of 30 mg/L at − 700 mV, which was 34.67 % higher than that without HA. The addition of HA decreased the requirement for electron donors and enriched Petrimonas and Rhodococcus for humus respiratory. HA addition regulated microbial interactions, and enhanced species cooperation between Petrimonas and dehalogenation species (Thauera and Desulfovibrio), phenol degradation-related species (Rhodococcus) as well as fermentative species (Desulfobulbus). Functional genes related to 4-BP degradation (dhaA/hemE/xylC/chnB/dmpN) and electron transfer (etfB/nuoA/qor/ccoN/coxA) were increased in abundance by HA addition. The enhanced microbial functions, as well as species cooperation and facilitation, all contributed to the improved 4-BP biodegradation in HA-added ESAS. This study provided a deep insight into microbial mechanism driven by HA and offered a promising strategy for improving halogenated organic pollutants removal from wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI