Interpretable Machine Learning for Fall Prediction Among Older Adults in China

防坠落 逻辑回归 老年学 预测建模 日常生活活动 医学 伤害预防 毒物控制 心理干预 自杀预防 职业安全与健康 坠落(事故) 机器学习 环境卫生 物理疗法 计算机科学 精神科 病理
作者
Xiaodong Chen,Lingxiao He,Kewei Shi,Yafei Wu,Shaowu Lin,Ya Fang
出处
期刊:American Journal of Preventive Medicine [Elsevier]
卷期号:65 (4): 579-586 被引量:12
标识
DOI:10.1016/j.amepre.2023.04.006
摘要

Falls in older adults are potentially devastating, whereas an accurate fall risk prediction model for community-dwelling older Chinese is still lacking. The objective of this study was to build prediction models for falls and fall-related injuries among community-dwelling older adults in China.This study used data (Waves 2015 and 2018) from 5,818 participants from the China Health and Retirement Longitudinal Study. A total of 107 input variables at the baseline level were regarded as candidate features. Five machine learning algorithms were used to build the 3-year fall and fall-related injury risk prediction models. SHapley Additive exPlanations was used for the prediction model explanation. Analyses were conducted in 2022.The logistic regression model achieved the best performance among fall and fall-related injury prediction models with an area under the receiver operating characteristic curve of 0.739 and 0.757, respectively. Experience of falling was the most important feature in both models. Other important features included basic activity of daily living, instrumental activity of daily living, depressive symptoms, house tidiness, grip strength, and sleep duration. The important features unique to the fall model were house temperature, sex, and flush toilets, whereas lung function, smoking, and Internet access were exclusively related to the fall-related injury model.This study suggests that the optimal models hold promise for screening out older adults at high risk for falls in facilitated targeted interventions. Fall prevention strategies should specifically focus on fall history, physical functions, psychological factors, and home environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TORCH完成签到 ,获得积分10
1秒前
2秒前
3秒前
明年关注了科研通微信公众号
5秒前
张怡博完成签到 ,获得积分10
8秒前
9秒前
天真的tian发布了新的文献求助10
9秒前
热心的咖啡豆完成签到,获得积分10
15秒前
15秒前
16秒前
20秒前
20秒前
sss发布了新的文献求助10
22秒前
25秒前
huang关注了科研通微信公众号
26秒前
关七应助夜谈十记采纳,获得10
26秒前
27秒前
我是老大应助酷酷幻梦采纳,获得10
27秒前
清新的忘幽完成签到,获得积分10
28秒前
顾矜应助cumtxzs采纳,获得10
28秒前
30秒前
Yzh完成签到,获得积分10
30秒前
30秒前
30秒前
30秒前
31秒前
天真的tian完成签到,获得积分10
31秒前
下雨的颜色完成签到,获得积分10
32秒前
35秒前
36秒前
deng关注了科研通微信公众号
36秒前
西北望发布了新的文献求助10
36秒前
starry完成签到 ,获得积分10
37秒前
37秒前
酷炫笑翠完成签到,获得积分20
39秒前
赵赵发布了新的文献求助10
42秒前
大菠萝发布了新的文献求助10
42秒前
今后应助酷炫笑翠采纳,获得10
44秒前
西北望完成签到,获得积分10
44秒前
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136067
求助须知:如何正确求助?哪些是违规求助? 2786953
关于积分的说明 7779912
捐赠科研通 2443071
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625244
版权声明 600870