A Lightweight Transformer-Based Approach of Specific Emitter Identification for the Automatic Identification System

计算机科学 鉴定(生物学) 变压器 电压 电气工程 工程类 植物 生物
作者
Pengfei Deng,Shaohua Hong,Jie Qi,Lin Wang,Haixin Sun
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 2303-2317 被引量:21
标识
DOI:10.1109/tifs.2023.3266627
摘要

The automatic identification system (AIS) is the automatic tracking system for automatic traffic control and collision avoidance services, which plays an important role in maritime traffic safety. However, it faces a possible security threat when the maritime mobile service identity (MMSI) that specifies the vessels' identity in AIS is illegally counterfeited. To guarantee the communication security of AIS for preventing fraudulent devices, we design a novel lightweight Transformer-based network GLFormer for specific emitter identification (SEI) to provide an extra security layer for AIS terminal emitters. Concretely, the gated local attention unit (GLAU) and the gated sliding local attention unit (GSLAU) modules that combine a simplified gated attention unit (GAU) and a sliding local self-attention (SLA) are developed in GLFormer to extract the radio frequency fingerprint (RFF) features automatically from the raw in-phase signals. Especially, the simplified GAU focuses on more critical RFF features and filters out the irrelevant information from the raw signal to improve performance, which is also a single-head self-attention module with fewer parameters for lightweight. Meanwhile, the SLA limits self-attention operation to a window, introducing the inductive bias of local information to enhance performance further and reducing the quadratic computational complexity to linearity for efficiency. Experimental results demonstrate that the GLFormer achieves 96.31% and 89.38% identification accuracy in the constructed AIS transient and AIS steady-state datasets with 50 vessels, respectively. The 99.90% identification accuracy is achieved in the universal software radio peripheral (USRP) dataset with ten devices. It is not only better than the existing methods but requires much fewer parameters and lower computational complexity; besides, it is also suitable for working with long signal sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
penghui完成签到,获得积分10
刚刚
捏捏捏完成签到,获得积分10
刚刚
在水一方应助lishanshan采纳,获得10
刚刚
坚强怀绿发布了新的文献求助10
刚刚
罗丹丹完成签到,获得积分10
刚刚
动听衬衫发布了新的文献求助10
1秒前
搞怪书兰完成签到,获得积分10
1秒前
mumu完成签到,获得积分10
2秒前
P_Zh_CN发布了新的文献求助10
2秒前
文艺的冬卉完成签到,获得积分20
2秒前
2秒前
2秒前
CodeCraft应助放荡不羁采纳,获得10
3秒前
传奇3应助乐事薯片噢采纳,获得10
3秒前
香蕉静芙完成签到,获得积分10
3秒前
活力的秋莲完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
豨莶完成签到,获得积分10
6秒前
小朱完成签到,获得积分10
6秒前
tongke完成签到,获得积分10
6秒前
和谐的寄凡完成签到,获得积分10
7秒前
7秒前
7秒前
香蕉觅云应助文艺的冬卉采纳,获得10
7秒前
黄景瑜发布了新的文献求助10
7秒前
8秒前
aurevoir完成签到,获得积分10
8秒前
小巧的寻芹完成签到,获得积分10
8秒前
9秒前
积极的糖豆完成签到 ,获得积分10
9秒前
9秒前
星辰大海应助图图采纳,获得10
9秒前
远山完成签到,获得积分10
9秒前
lzl发布了新的文献求助10
9秒前
ahai发布了新的文献求助10
9秒前
涵涵涵完成签到,获得积分10
10秒前
甜美的瑾瑜完成签到,获得积分10
10秒前
千幻发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316202
求助须知:如何正确求助?哪些是违规求助? 4458692
关于积分的说明 13871829
捐赠科研通 4348587
什么是DOI,文献DOI怎么找? 2388260
邀请新用户注册赠送积分活动 1382364
关于科研通互助平台的介绍 1351755