亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Lightweight Transformer-Based Approach of Specific Emitter Identification for the Automatic Identification System

计算机科学 鉴定(生物学) 变压器 电压 电气工程 工程类 植物 生物
作者
Pengfei Deng,Shaohua Hong,Jie Qi,Lin Wang,Haixin Sun
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 2303-2317 被引量:21
标识
DOI:10.1109/tifs.2023.3266627
摘要

The automatic identification system (AIS) is the automatic tracking system for automatic traffic control and collision avoidance services, which plays an important role in maritime traffic safety. However, it faces a possible security threat when the maritime mobile service identity (MMSI) that specifies the vessels' identity in AIS is illegally counterfeited. To guarantee the communication security of AIS for preventing fraudulent devices, we design a novel lightweight Transformer-based network GLFormer for specific emitter identification (SEI) to provide an extra security layer for AIS terminal emitters. Concretely, the gated local attention unit (GLAU) and the gated sliding local attention unit (GSLAU) modules that combine a simplified gated attention unit (GAU) and a sliding local self-attention (SLA) are developed in GLFormer to extract the radio frequency fingerprint (RFF) features automatically from the raw in-phase signals. Especially, the simplified GAU focuses on more critical RFF features and filters out the irrelevant information from the raw signal to improve performance, which is also a single-head self-attention module with fewer parameters for lightweight. Meanwhile, the SLA limits self-attention operation to a window, introducing the inductive bias of local information to enhance performance further and reducing the quadratic computational complexity to linearity for efficiency. Experimental results demonstrate that the GLFormer achieves 96.31% and 89.38% identification accuracy in the constructed AIS transient and AIS steady-state datasets with 50 vessels, respectively. The 99.90% identification accuracy is achieved in the universal software radio peripheral (USRP) dataset with ten devices. It is not only better than the existing methods but requires much fewer parameters and lower computational complexity; besides, it is also suitable for working with long signal sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
33秒前
34秒前
Akim应助周城采纳,获得10
38秒前
浮游应助Nan采纳,获得10
38秒前
44秒前
50秒前
周城发布了新的文献求助10
50秒前
菠萝吹雪完成签到,获得积分10
52秒前
神明完成签到 ,获得积分10
52秒前
菠萝吹雪发布了新的文献求助10
56秒前
Takahara2000完成签到,获得积分10
2分钟前
Becky完成签到 ,获得积分10
3分钟前
思源应助虚幻心锁采纳,获得10
3分钟前
3分钟前
虚幻心锁发布了新的文献求助10
3分钟前
虚幻心锁完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
美满的梦蕊完成签到,获得积分20
4分钟前
4分钟前
欲扬先抑完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
阿尔法贝塔完成签到 ,获得积分10
5分钟前
6分钟前
欲扬先抑发布了新的文献求助10
6分钟前
6分钟前
7分钟前
儒雅海秋完成签到,获得积分10
8分钟前
从容芮应助科研通管家采纳,获得30
8分钟前
小西完成签到 ,获得积分10
9分钟前
9分钟前
胖小羊完成签到 ,获得积分10
9分钟前
gqw3505完成签到,获得积分10
10分钟前
从容芮应助科研通管家采纳,获得30
10分钟前
从容芮应助科研通管家采纳,获得30
10分钟前
虚线完成签到 ,获得积分10
10分钟前
11分钟前
11分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127419
求助须知:如何正确求助?哪些是违规求助? 4330459
关于积分的说明 13493363
捐赠科研通 4166074
什么是DOI,文献DOI怎么找? 2283752
邀请新用户注册赠送积分活动 1284784
关于科研通互助平台的介绍 1224800