A Lightweight Transformer-Based Approach of Specific Emitter Identification for the Automatic Identification System

计算机科学 鉴定(生物学) 变压器 电压 电气工程 工程类 植物 生物
作者
Pengfei Deng,Shaohua Hong,Jie Qi,Lin Wang,Haixin Sun
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 2303-2317 被引量:21
标识
DOI:10.1109/tifs.2023.3266627
摘要

The automatic identification system (AIS) is the automatic tracking system for automatic traffic control and collision avoidance services, which plays an important role in maritime traffic safety. However, it faces a possible security threat when the maritime mobile service identity (MMSI) that specifies the vessels' identity in AIS is illegally counterfeited. To guarantee the communication security of AIS for preventing fraudulent devices, we design a novel lightweight Transformer-based network GLFormer for specific emitter identification (SEI) to provide an extra security layer for AIS terminal emitters. Concretely, the gated local attention unit (GLAU) and the gated sliding local attention unit (GSLAU) modules that combine a simplified gated attention unit (GAU) and a sliding local self-attention (SLA) are developed in GLFormer to extract the radio frequency fingerprint (RFF) features automatically from the raw in-phase signals. Especially, the simplified GAU focuses on more critical RFF features and filters out the irrelevant information from the raw signal to improve performance, which is also a single-head self-attention module with fewer parameters for lightweight. Meanwhile, the SLA limits self-attention operation to a window, introducing the inductive bias of local information to enhance performance further and reducing the quadratic computational complexity to linearity for efficiency. Experimental results demonstrate that the GLFormer achieves 96.31% and 89.38% identification accuracy in the constructed AIS transient and AIS steady-state datasets with 50 vessels, respectively. The 99.90% identification accuracy is achieved in the universal software radio peripheral (USRP) dataset with ten devices. It is not only better than the existing methods but requires much fewer parameters and lower computational complexity; besides, it is also suitable for working with long signal sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
张喻235532完成签到,获得积分10
3秒前
失眠虔纹发布了新的文献求助10
4秒前
香蕉觅云应助糊涂的小伙采纳,获得10
4秒前
4秒前
sutharsons应助科研通管家采纳,获得200
6秒前
打打应助科研通管家采纳,获得10
6秒前
axin应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
6秒前
李健应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
7秒前
lu应助科研通管家采纳,获得10
7秒前
7秒前
华仔应助科研通管家采纳,获得10
7秒前
研友_MLJldZ发布了新的文献求助10
7秒前
wys完成签到 ,获得积分10
8秒前
9秒前
michaelvin完成签到,获得积分10
9秒前
学术大白完成签到 ,获得积分10
12秒前
12秒前
SYT完成签到,获得积分10
13秒前
14秒前
16秒前
16秒前
16秒前
17秒前
17秒前
魏伯安发布了新的文献求助10
17秒前
17秒前
zhouleiwang完成签到,获得积分10
18秒前
李爱国应助aiming采纳,获得10
19秒前
无奈傲菡完成签到,获得积分10
20秒前
TT发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849