Medical entity recognition and knowledge map relationship analysis of Chinese EMRs based on improved BiLSTM-CRF

计算机科学 自然语言处理 医学诊断 人工智能 病历 鉴定(生物学) 词汇 注释 情报检索 精确性和召回率 医学 放射科 语言学 植物 生物 哲学
作者
Ke Jia,Weiji Wang,Xiaojun Chen,Jianping Gou,Yan Gao,Shuai Jin
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:108: 108709-108709 被引量:31
标识
DOI:10.1016/j.compeleceng.2023.108709
摘要

With the development of medical informatization, a large number of patients' electronic medical records (EMRs) have been accumulated in the hospital information system, which is characterized by multi-structured data form, diversified professional vocabulary categories and fuzzy vocabulary demarcation. Natural language processing (NLP) provides a silver lining for parsing electronic medical records, and the mainstream methods include dictionary-based methods, rule-based and statistical methods, and machine learning methods. Due to the semantic richness and structural diversity of Chinese text, Chinese EMRs analysis methods are still scarce compared with English EMRs. In order to overcome the problems of unstructured, multiple meanings of words and unclear word boundaries in text of Chinese electronic medical records, this paper proposes a medical entity recognition method based on RoFormerV2-BiLSTM-CRF fusion model, using BIO annotation method to annotate the recognized medical entities, and using knowledge graph to analyze the medical entity relationships identified in single patient medical record, multiple patient medical records respectively. The relationships between the medical entities identified in a single patient record and multiple patient records are analyzed using knowledge graphs. The experimental analysis was conducted on the expert-annotated dataset CCKS2019, and the results showed that the proposed method was effective for recognizing "Diseases and Diagnoses", "Laboratory Tests", "Imaging Examinations", "Anatomical Sites", "Drugs" and "Surgery" in the dataset. The average accuracy, recall and F1-Score of the proposed method for the identification of the six medical entities, are 84.8%, 83.5% and 83.9%, respectively, which were 5.3%, 8.6% and 6.8% higher than the traditional Word2Vec-BiLSTM-CRF model, and the existing Word2Vec-BiLSTM-CRF and BERT-BiLSTM-CRF models were iteratively trained with the same evaluation. The experimental results show that the proposed model performs better in medical entity recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实语海完成签到,获得积分10
1秒前
2秒前
小明完成签到 ,获得积分10
2秒前
燕子发布了新的文献求助10
3秒前
我我我完成签到,获得积分10
3秒前
彩虹完成签到,获得积分10
5秒前
樱桃汽水完成签到,获得积分10
6秒前
热情嘉懿完成签到,获得积分10
12秒前
szcyxzh完成签到,获得积分10
14秒前
甜美丹蝶关注了科研通微信公众号
15秒前
小青椒完成签到,获得积分0
20秒前
Freya发布了新的文献求助20
20秒前
Brave发布了新的文献求助10
21秒前
务实的一斩完成签到 ,获得积分10
26秒前
30秒前
克林沙星完成签到,获得积分10
32秒前
甜美丹蝶发布了新的文献求助10
33秒前
Freya完成签到,获得积分10
34秒前
jackhlj完成签到,获得积分10
35秒前
微光完成签到,获得积分10
37秒前
小石头完成签到,获得积分10
37秒前
天天快乐应助燕子采纳,获得10
39秒前
sa0022完成签到,获得积分10
39秒前
老实验人完成签到,获得积分10
44秒前
Yiling完成签到,获得积分10
45秒前
47秒前
hdbys发布了新的文献求助30
48秒前
哈哈完成签到,获得积分10
49秒前
研友_VZG7GZ应助moral采纳,获得10
50秒前
lm完成签到,获得积分10
51秒前
王能行完成签到,获得积分10
53秒前
大力的远望完成签到 ,获得积分10
54秒前
123完成签到 ,获得积分20
56秒前
今天晚上早点睡完成签到 ,获得积分10
57秒前
57秒前
dahuihui完成签到,获得积分10
57秒前
yinghuo完成签到,获得积分10
58秒前
燕子发布了新的文献求助10
1分钟前
清沧炽魂完成签到,获得积分10
1分钟前
燕子完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565186
求助须知:如何正确求助?哪些是违规求助? 4650041
关于积分的说明 14689651
捐赠科研通 4591914
什么是DOI,文献DOI怎么找? 2519400
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463139