Medical entity recognition and knowledge map relationship analysis of Chinese EMRs based on improved BiLSTM-CRF

计算机科学 自然语言处理 医学诊断 人工智能 病历 鉴定(生物学) 词汇 注释 情报检索 精确性和召回率 医学 放射科 语言学 哲学 植物 生物
作者
Ke Jia,Weiji Wang,Xiaojun Chen,Jianping Gou,Yan Gao,Shuai Jin
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:108: 108709-108709 被引量:11
标识
DOI:10.1016/j.compeleceng.2023.108709
摘要

With the development of medical informatization, a large number of patients' electronic medical records (EMRs) have been accumulated in the hospital information system, which is characterized by multi-structured data form, diversified professional vocabulary categories and fuzzy vocabulary demarcation. Natural language processing (NLP) provides a silver lining for parsing electronic medical records, and the mainstream methods include dictionary-based methods, rule-based and statistical methods, and machine learning methods. Due to the semantic richness and structural diversity of Chinese text, Chinese EMRs analysis methods are still scarce compared with English EMRs. In order to overcome the problems of unstructured, multiple meanings of words and unclear word boundaries in text of Chinese electronic medical records, this paper proposes a medical entity recognition method based on RoFormerV2-BiLSTM-CRF fusion model, using BIO annotation method to annotate the recognized medical entities, and using knowledge graph to analyze the medical entity relationships identified in single patient medical record, multiple patient medical records respectively. The relationships between the medical entities identified in a single patient record and multiple patient records are analyzed using knowledge graphs. The experimental analysis was conducted on the expert-annotated dataset CCKS2019, and the results showed that the proposed method was effective for recognizing "Diseases and Diagnoses", "Laboratory Tests", "Imaging Examinations", "Anatomical Sites", "Drugs" and "Surgery" in the dataset. The average accuracy, recall and F1-Score of the proposed method for the identification of the six medical entities, are 84.8%, 83.5% and 83.9%, respectively, which were 5.3%, 8.6% and 6.8% higher than the traditional Word2Vec-BiLSTM-CRF model, and the existing Word2Vec-BiLSTM-CRF and BERT-BiLSTM-CRF models were iteratively trained with the same evaluation. The experimental results show that the proposed model performs better in medical entity recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助lvsehx采纳,获得10
1秒前
55555发布了新的文献求助10
1秒前
玖玖关注了科研通微信公众号
2秒前
丁论文发布了新的文献求助10
3秒前
二二发布了新的文献求助10
3秒前
3秒前
4秒前
从容芮应助张三采纳,获得10
4秒前
美羊羊完成签到,获得积分10
5秒前
暴躁的雨梅完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
BK2008发布了新的文献求助10
8秒前
聪明大米应助酷炫的成风采纳,获得10
8秒前
云淡风轻发布了新的文献求助10
10秒前
吃的饱饱呀完成签到 ,获得积分10
10秒前
10秒前
阿韩完成签到,获得积分10
11秒前
单薄凤灵发布了新的文献求助10
11秒前
11秒前
sec完成签到,获得积分10
12秒前
Ava应助机智的尔曼采纳,获得10
12秒前
Alive发布了新的文献求助30
13秒前
1811发布了新的文献求助10
13秒前
14秒前
妮妮发布了新的文献求助10
15秒前
16秒前
16秒前
彭于晏应助Alive采纳,获得10
16秒前
20秒前
23秒前
24秒前
zhuzhu发布了新的文献求助10
24秒前
顾矜应助小邢一定行采纳,获得10
25秒前
26秒前
杜杜发布了新的文献求助10
27秒前
万能图书馆应助lc采纳,获得10
27秒前
SCI发发发发布了新的文献求助10
28秒前
小木得霖发布了新的文献求助10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310676
求助须知:如何正确求助?哪些是违规求助? 2943441
关于积分的说明 8515247
捐赠科研通 2618790
什么是DOI,文献DOI怎么找? 1431435
科研通“疑难数据库(出版商)”最低求助积分说明 664468
邀请新用户注册赠送积分活动 649643