亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Medical entity recognition and knowledge map relationship analysis of Chinese EMRs based on improved BiLSTM-CRF

计算机科学 自然语言处理 医学诊断 人工智能 病历 鉴定(生物学) 词汇 注释 情报检索 精确性和召回率 医学 放射科 语言学 植物 生物 哲学
作者
Ke Jia,Weiji Wang,Xiaojun Chen,Jianping Gou,Yan Gao,Shuai Jin
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:108: 108709-108709 被引量:31
标识
DOI:10.1016/j.compeleceng.2023.108709
摘要

With the development of medical informatization, a large number of patients' electronic medical records (EMRs) have been accumulated in the hospital information system, which is characterized by multi-structured data form, diversified professional vocabulary categories and fuzzy vocabulary demarcation. Natural language processing (NLP) provides a silver lining for parsing electronic medical records, and the mainstream methods include dictionary-based methods, rule-based and statistical methods, and machine learning methods. Due to the semantic richness and structural diversity of Chinese text, Chinese EMRs analysis methods are still scarce compared with English EMRs. In order to overcome the problems of unstructured, multiple meanings of words and unclear word boundaries in text of Chinese electronic medical records, this paper proposes a medical entity recognition method based on RoFormerV2-BiLSTM-CRF fusion model, using BIO annotation method to annotate the recognized medical entities, and using knowledge graph to analyze the medical entity relationships identified in single patient medical record, multiple patient medical records respectively. The relationships between the medical entities identified in a single patient record and multiple patient records are analyzed using knowledge graphs. The experimental analysis was conducted on the expert-annotated dataset CCKS2019, and the results showed that the proposed method was effective for recognizing "Diseases and Diagnoses", "Laboratory Tests", "Imaging Examinations", "Anatomical Sites", "Drugs" and "Surgery" in the dataset. The average accuracy, recall and F1-Score of the proposed method for the identification of the six medical entities, are 84.8%, 83.5% and 83.9%, respectively, which were 5.3%, 8.6% and 6.8% higher than the traditional Word2Vec-BiLSTM-CRF model, and the existing Word2Vec-BiLSTM-CRF and BERT-BiLSTM-CRF models were iteratively trained with the same evaluation. The experimental results show that the proposed model performs better in medical entity recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
6秒前
大个应助louis采纳,获得10
10秒前
畅快甜瓜发布了新的文献求助10
11秒前
Robot完成签到 ,获得积分10
14秒前
25秒前
CipherSage应助畅快甜瓜采纳,获得10
33秒前
33秒前
40秒前
48秒前
jy发布了新的文献求助10
49秒前
53秒前
louis发布了新的文献求助10
54秒前
shame完成签到 ,获得积分10
55秒前
1分钟前
1分钟前
科研通AI6.1应助jy采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
空儒完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Muhammad发布了新的文献求助10
1分钟前
畅快甜瓜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
jy发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
小璐发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732177
求助须知:如何正确求助?哪些是违规求助? 5337212
关于积分的说明 15322034
捐赠科研通 4877874
什么是DOI,文献DOI怎么找? 2620700
邀请新用户注册赠送积分活动 1569938
关于科研通互助平台的介绍 1526542