Medical entity recognition and knowledge map relationship analysis of Chinese EMRs based on improved BiLSTM-CRF

计算机科学 自然语言处理 医学诊断 人工智能 病历 鉴定(生物学) 词汇 注释 情报检索 精确性和召回率 医学 放射科 语言学 哲学 植物 生物
作者
Ke Jia,Weiji Wang,Xiaojun Chen,Jianping Gou,Yan Gao,Shuai Jin
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:108: 108709-108709 被引量:31
标识
DOI:10.1016/j.compeleceng.2023.108709
摘要

With the development of medical informatization, a large number of patients' electronic medical records (EMRs) have been accumulated in the hospital information system, which is characterized by multi-structured data form, diversified professional vocabulary categories and fuzzy vocabulary demarcation. Natural language processing (NLP) provides a silver lining for parsing electronic medical records, and the mainstream methods include dictionary-based methods, rule-based and statistical methods, and machine learning methods. Due to the semantic richness and structural diversity of Chinese text, Chinese EMRs analysis methods are still scarce compared with English EMRs. In order to overcome the problems of unstructured, multiple meanings of words and unclear word boundaries in text of Chinese electronic medical records, this paper proposes a medical entity recognition method based on RoFormerV2-BiLSTM-CRF fusion model, using BIO annotation method to annotate the recognized medical entities, and using knowledge graph to analyze the medical entity relationships identified in single patient medical record, multiple patient medical records respectively. The relationships between the medical entities identified in a single patient record and multiple patient records are analyzed using knowledge graphs. The experimental analysis was conducted on the expert-annotated dataset CCKS2019, and the results showed that the proposed method was effective for recognizing "Diseases and Diagnoses", "Laboratory Tests", "Imaging Examinations", "Anatomical Sites", "Drugs" and "Surgery" in the dataset. The average accuracy, recall and F1-Score of the proposed method for the identification of the six medical entities, are 84.8%, 83.5% and 83.9%, respectively, which were 5.3%, 8.6% and 6.8% higher than the traditional Word2Vec-BiLSTM-CRF model, and the existing Word2Vec-BiLSTM-CRF and BERT-BiLSTM-CRF models were iteratively trained with the same evaluation. The experimental results show that the proposed model performs better in medical entity recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助热情的依秋采纳,获得10
刚刚
在水一方应助二十而耳顺采纳,获得10
刚刚
甜味白开水完成签到,获得积分10
2秒前
2秒前
4秒前
t妥妥滴发布了新的文献求助10
4秒前
5秒前
茉莉猫哟发布了新的文献求助10
7秒前
酷波er应助caoju采纳,获得10
7秒前
ohh完成签到 ,获得积分10
7秒前
8秒前
科研小白发布了新的文献求助10
9秒前
欣喜面包完成签到,获得积分10
10秒前
12秒前
苏苏发布了新的文献求助10
12秒前
Ljh发布了新的文献求助10
14秒前
SciGPT应助科研小白采纳,获得10
14秒前
17秒前
17秒前
19秒前
19秒前
19秒前
sss完成签到,获得积分10
21秒前
拼搏君浩发布了新的文献求助10
21秒前
虚幻的楼房完成签到 ,获得积分10
22秒前
科研小白完成签到,获得积分10
23秒前
滕皓轩发布了新的文献求助10
25秒前
旅程发布了新的文献求助30
25秒前
25秒前
27秒前
二十而耳顺完成签到,获得积分10
28秒前
29秒前
科研求助者03完成签到,获得积分10
30秒前
温暖宛筠发布了新的文献求助10
31秒前
zxer发布了新的文献求助10
31秒前
小溪苏发布了新的文献求助10
33秒前
852应助一只奇怪的鸟采纳,获得30
37秒前
bkagyin应助zxer采纳,获得10
42秒前
43秒前
研友_ZlqeD8发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868245
求助须知:如何正确求助?哪些是违规求助? 6439836
关于积分的说明 15658050
捐赠科研通 4983670
什么是DOI,文献DOI怎么找? 2687581
邀请新用户注册赠送积分活动 1630242
关于科研通互助平台的介绍 1588346