已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Medical entity recognition and knowledge map relationship analysis of Chinese EMRs based on improved BiLSTM-CRF

计算机科学 自然语言处理 医学诊断 人工智能 病历 鉴定(生物学) 词汇 注释 情报检索 精确性和召回率 医学 放射科 语言学 哲学 植物 生物
作者
Jia Ke,Weiji Wang,Xiaojun Chen,Jianping Gou,Yan Gao,Shuai Jin
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:108: 108709-108709 被引量:23
标识
DOI:10.1016/j.compeleceng.2023.108709
摘要

With the development of medical informatization, a large number of patients' electronic medical records (EMRs) have been accumulated in the hospital information system, which is characterized by multi-structured data form, diversified professional vocabulary categories and fuzzy vocabulary demarcation. Natural language processing (NLP) provides a silver lining for parsing electronic medical records, and the mainstream methods include dictionary-based methods, rule-based and statistical methods, and machine learning methods. Due to the semantic richness and structural diversity of Chinese text, Chinese EMRs analysis methods are still scarce compared with English EMRs. In order to overcome the problems of unstructured, multiple meanings of words and unclear word boundaries in text of Chinese electronic medical records, this paper proposes a medical entity recognition method based on RoFormerV2-BiLSTM-CRF fusion model, using BIO annotation method to annotate the recognized medical entities, and using knowledge graph to analyze the medical entity relationships identified in single patient medical record, multiple patient medical records respectively. The relationships between the medical entities identified in a single patient record and multiple patient records are analyzed using knowledge graphs. The experimental analysis was conducted on the expert-annotated dataset CCKS2019, and the results showed that the proposed method was effective for recognizing "Diseases and Diagnoses", "Laboratory Tests", "Imaging Examinations", "Anatomical Sites", "Drugs" and "Surgery" in the dataset. The average accuracy, recall and F1-Score of the proposed method for the identification of the six medical entities, are 84.8%, 83.5% and 83.9%, respectively, which were 5.3%, 8.6% and 6.8% higher than the traditional Word2Vec-BiLSTM-CRF model, and the existing Word2Vec-BiLSTM-CRF and BERT-BiLSTM-CRF models were iteratively trained with the same evaluation. The experimental results show that the proposed model performs better in medical entity recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何必呢完成签到,获得积分10
3秒前
田様应助胡萝卜采纳,获得10
3秒前
4秒前
机灵柚子应助三泥采纳,获得20
5秒前
李李原上草完成签到 ,获得积分10
5秒前
DrW1111发布了新的文献求助10
7秒前
旨酒欣欣应助ho hou h采纳,获得10
20秒前
DrW1111完成签到,获得积分10
22秒前
22秒前
anthea完成签到 ,获得积分10
24秒前
26秒前
29秒前
无语的诗柳完成签到 ,获得积分10
32秒前
禹依白发布了新的文献求助10
32秒前
禹依白完成签到,获得积分10
37秒前
喜悦的小土豆完成签到 ,获得积分10
40秒前
汉堡包应助科研通管家采纳,获得10
41秒前
传奇3应助科研通管家采纳,获得10
41秒前
小二郎应助科研通管家采纳,获得10
41秒前
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
lily应助科研通管家采纳,获得10
42秒前
51秒前
51秒前
Dritsw应助笑点低紊采纳,获得20
52秒前
lihuahui发布了新的文献求助10
56秒前
幽悠梦儿发布了新的文献求助10
57秒前
58秒前
学者风范完成签到 ,获得积分10
1分钟前
啊大大完成签到,获得积分10
1分钟前
luyuhao3完成签到,获得积分10
1分钟前
KIKI完成签到 ,获得积分10
1分钟前
排骨大王完成签到,获得积分10
1分钟前
Fine完成签到,获得积分10
1分钟前
哈哈完成签到 ,获得积分10
1分钟前
xx完成签到 ,获得积分10
1分钟前
skbkbe完成签到 ,获得积分10
1分钟前
HCCha完成签到,获得积分10
1分钟前
思源应助lihuahui采纳,获得10
1分钟前
HS完成签到,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965509
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155154
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176