亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Medical entity recognition and knowledge map relationship analysis of Chinese EMRs based on improved BiLSTM-CRF

计算机科学 自然语言处理 医学诊断 人工智能 病历 鉴定(生物学) 词汇 注释 情报检索 精确性和召回率 医学 放射科 语言学 植物 生物 哲学
作者
Ke Jia,Weiji Wang,Xiaojun Chen,Jianping Gou,Yan Gao,Shuai Jin
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:108: 108709-108709 被引量:31
标识
DOI:10.1016/j.compeleceng.2023.108709
摘要

With the development of medical informatization, a large number of patients' electronic medical records (EMRs) have been accumulated in the hospital information system, which is characterized by multi-structured data form, diversified professional vocabulary categories and fuzzy vocabulary demarcation. Natural language processing (NLP) provides a silver lining for parsing electronic medical records, and the mainstream methods include dictionary-based methods, rule-based and statistical methods, and machine learning methods. Due to the semantic richness and structural diversity of Chinese text, Chinese EMRs analysis methods are still scarce compared with English EMRs. In order to overcome the problems of unstructured, multiple meanings of words and unclear word boundaries in text of Chinese electronic medical records, this paper proposes a medical entity recognition method based on RoFormerV2-BiLSTM-CRF fusion model, using BIO annotation method to annotate the recognized medical entities, and using knowledge graph to analyze the medical entity relationships identified in single patient medical record, multiple patient medical records respectively. The relationships between the medical entities identified in a single patient record and multiple patient records are analyzed using knowledge graphs. The experimental analysis was conducted on the expert-annotated dataset CCKS2019, and the results showed that the proposed method was effective for recognizing "Diseases and Diagnoses", "Laboratory Tests", "Imaging Examinations", "Anatomical Sites", "Drugs" and "Surgery" in the dataset. The average accuracy, recall and F1-Score of the proposed method for the identification of the six medical entities, are 84.8%, 83.5% and 83.9%, respectively, which were 5.3%, 8.6% and 6.8% higher than the traditional Word2Vec-BiLSTM-CRF model, and the existing Word2Vec-BiLSTM-CRF and BERT-BiLSTM-CRF models were iteratively trained with the same evaluation. The experimental results show that the proposed model performs better in medical entity recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
22秒前
original完成签到,获得积分10
52秒前
57秒前
dh关注了科研通微信公众号
1分钟前
hdnej发布了新的文献求助10
1分钟前
酷酷海豚完成签到,获得积分10
1分钟前
希望天下0贩的0应助hdnej采纳,获得10
1分钟前
dh发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
4分钟前
4分钟前
761997580完成签到 ,获得积分10
4分钟前
JamesPei应助科研通管家采纳,获得10
4分钟前
5分钟前
虚拟的纸鹤完成签到 ,获得积分10
5分钟前
TIDUS完成签到,获得积分10
5分钟前
a36380382完成签到,获得积分10
5分钟前
TIDUS完成签到,获得积分10
5分钟前
5分钟前
奶茶发布了新的文献求助10
6分钟前
奶茶完成签到,获得积分10
6分钟前
6分钟前
zy完成签到,获得积分10
7分钟前
dh完成签到,获得积分10
7分钟前
zy发布了新的文献求助10
7分钟前
嘻嘻完成签到,获得积分10
7分钟前
xuxu完成签到 ,获得积分10
7分钟前
sandwich完成签到 ,获得积分10
8分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
9分钟前
1777完成签到,获得积分10
9分钟前
1777发布了新的文献求助10
9分钟前
9分钟前
早茶可口完成签到,获得积分10
9分钟前
奥德彪爱拉香蕉皮完成签到,获得积分10
9分钟前
阿里完成签到,获得积分10
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413274
求助须知:如何正确求助?哪些是违规求助? 4530416
关于积分的说明 14122912
捐赠科研通 4445436
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408746