黄土
环境科学
气候变化
植树造林
土地利用、土地利用的变化和林业
耕地
土地利用
农林复合经营
自然地理学
地质学
生态学
地理
农业
地貌学
生物
考古
作者
Yunqiang Wang,Wei Hu,Hui Sun,Yali Zhao,Pingping Zhang,Zimin Li,Zixuan Zhou,Yongping Tong,Shaozhen Liu,Junxia Zhou,Mingbin Huang,Xiaoxu Jia,Brent Clothier,Mingan Shao,Weijian Zhou,Zhisheng An
标识
DOI:10.1073/pnas.2322127121
摘要
Soil moisture (SM) is essential for sustaining services from Earth’s critical zone, a thin-living skin spanning from the canopy to groundwater. In the Anthropocene epoch, intensive afforestation has remarkably contributed to global greening and certain service improvements, often at the cost of reduced SM. However, attributing the response of SM in deep soil to such human activities is a great challenge because of the scarcity of long-term observations. Here, we present a 37 y (1985 to 2021) analysis of SM dynamics at two scales across China’s monsoon loess critical zone. Site-scale data indicate that land-use conversion from arable cropland to forest/grassland caused an 18% increase in SM deficit over 0 to 18 m depth ( P < 0.01). Importantly, this SM deficit intensified over time, despite limited climate change influence. Across the Loess Plateau, SM storage in 0 to 10 m layer exhibited a significant decreasing trend from 1985 to 2021, with a turning point in 1999 when starting afforestation. Compared with SM storage before 1999, the relative contributions of climate change and afforestation to SM decline after 1999 were −8% and 108%, respectively. This emphasizes the pronounced impacts of intensifying land-use conversions as the principal catalyst of SM decline. Such a decline shifts 18% of total area into an at-risk status, mainly in the semiarid region, thereby threatening SM security. To mitigate this risk, future land management policies should acknowledge the crucial role of intensifying land-use conversions and their interplay with climate change. This is imperative to ensure SM security and sustain critical zone services.
科研通智能强力驱动
Strongly Powered by AbleSci AI