Selective Memory Recursive Least Squares: Recast Forgetting Into Memory in RBF Neural Network-Based Real-Time Learning

遗忘 人工神经网络 一般化 人工智能 计算机科学 梯度下降 机器学习 算法 数学 数学分析 哲学 语言学
作者
Yiming Fei,Jiangang Li,Yanan Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:2
标识
DOI:10.1109/tnnls.2024.3385407
摘要

In radial basis function neural network (RBFNN)-based real-time learning tasks, forgetting mechanisms are widely used such that the neural network can keep its sensitivity to new data. However, with forgetting mechanisms, some useful knowledge will get lost simply because they are learned a long time ago, which we refer to as the passive knowledge forgetting phenomenon. To address this problem, this article proposes a real-time training method named selective memory recursive least squares (SMRLS) in which the classical forgetting mechanisms are recast into a memory mechanism. Different from the forgetting mechanism, which mainly evaluates the importance of samples according to the time when samples are collected, the memory mechanism evaluates the importance of samples through both temporal and spatial distribution of samples. With SMRLS, the input space of the RBFNN is evenly divided into a finite number of partitions, and a synthesized objective function is developed using synthesized samples from each partition. In addition to the current approximation error, the neural network also updates its weights according to the recorded data from the partition being visited. Compared with classical training methods including the forgetting factor recursive least squares (FFRLS) and stochastic gradient descent (SGD) methods, SMRLS achieves improved learning speed and generalization capability, which are demonstrated by corresponding simulation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
planto发布了新的文献求助30
1秒前
2秒前
善良清炎发布了新的文献求助10
3秒前
yaokla发布了新的文献求助10
4秒前
阿庭应助shiyiru采纳,获得10
4秒前
小冉发布了新的文献求助10
4秒前
4秒前
七7完成签到,获得积分10
5秒前
科研通AI5应助marketing采纳,获得10
7秒前
Lucas应助睦仁李采纳,获得10
7秒前
8秒前
8秒前
榆木桢楠完成签到,获得积分10
8秒前
科研通AI5应助www采纳,获得10
9秒前
Nefertari完成签到,获得积分10
11秒前
13秒前
桐桐应助香蕉小瓜采纳,获得10
13秒前
Umusakun发布了新的文献求助10
14秒前
精明怜南发布了新的文献求助100
16秒前
Yao完成签到,获得积分10
16秒前
18秒前
18秒前
Bingtao_Lian完成签到 ,获得积分10
21秒前
香蕉觅云应助刺五加采纳,获得10
21秒前
sylvia发布了新的文献求助20
21秒前
Oracle应助善良清炎采纳,获得20
21秒前
23秒前
CodeCraft应助壮观以松采纳,获得10
23秒前
科研通AI5应助黄金拉塔恩采纳,获得10
24秒前
m13965062353完成签到,获得积分10
24秒前
平平无奇打工人完成签到 ,获得积分10
25秒前
orixero应助Umusakun采纳,获得10
25秒前
26秒前
shiyongli发布了新的文献求助10
27秒前
FashionBoy应助科研通管家采纳,获得10
28秒前
沈惠映完成签到 ,获得积分10
28秒前
Owen应助科研通管家采纳,获得10
28秒前
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
乐观啤酒应助科研通管家采纳,获得10
28秒前
高分求助中
All the Birds of the World 2000
Soviet Aid to the Third World: The Facts and Figures 500
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3716053
求助须知:如何正确求助?哪些是违规求助? 3262714
关于积分的说明 9926220
捐赠科研通 2976599
什么是DOI,文献DOI怎么找? 1632404
邀请新用户注册赠送积分活动 774370
科研通“疑难数据库(出版商)”最低求助积分说明 744950