LWUAVDet: A Lightweight UAV Object Detection Network on Edge Devices

计算机科学 GSM演进的增强数据速率 对象(语法) 计算机网络 计算机视觉 人工智能
作者
Xuanlin Min,Wei Zhou,Rui Hu,Yinyue Wu,Yiran Pang,Jun Yi
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (13): 24013-24023 被引量:5
标识
DOI:10.1109/jiot.2024.3388045
摘要

Real-time object detection on unmanned aerial vehicles (UAVs) poses a challenging issue due to the limited computing resources of edge devices. To address this problem, we propose a novel lightweight object detection network named LWUAVDet for real-time UAV applications. The detector comprises three core components: E-FPN, PixED Head, and Aux Head. Firstly, we develop an extended and refined topology in the Neck layer, called E-FPN, to enhance the multi-scale representation of each stage and alleviate the aliasing effect caused by the repetitive feature fusion of the Neck. Secondly, we propose a pixel encoder and decoder for dimension exchange between space and channel to achieve flexible and effective feature extraction in the Head layer, named PixED Head. Furthermore, Aux Head for the auxiliary task merely using the Head layer is presented for online distillation to enhance feature representation. Specially, in Aux Head, we introduce the weighted sum of Focal Loss and complete intersection over union loss for the cost matrix of the sample assigner to alleviate category imbalance and aspect ratio imbalance of the UAV data. The performance of our LWUAVDet is validated experimentally on the NVIDIA Jetson Xavier NX and Jetson Nano GPU devices. Extensive experiments demonstrate that the LWUAVDet models achieve a better trade-off between accuracy and latency on VisDrone, UAVDT, and VOC2012 datasets compared to state-of-the-art lightweight models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助归海紫翠采纳,获得30
刚刚
热情的初兰完成签到 ,获得积分10
1秒前
顺顺完成签到,获得积分10
1秒前
莫妮卡卡完成签到,获得积分10
1秒前
nbing完成签到,获得积分10
2秒前
SCI发布了新的文献求助50
2秒前
小猫多鱼完成签到,获得积分10
3秒前
3秒前
3秒前
默默尔烟发布了新的文献求助10
3秒前
3秒前
3秒前
宁静致远完成签到,获得积分10
3秒前
天天快乐应助内向秋寒采纳,获得10
6秒前
sfafasfsdf完成签到,获得积分10
6秒前
6秒前
luuuuuu发布了新的文献求助10
7秒前
lai发布了新的文献求助30
7秒前
7秒前
zrk发布了新的文献求助10
7秒前
7秒前
8秒前
ZJJ完成签到,获得积分10
8秒前
花开的声音1217完成签到,获得积分10
9秒前
古药完成签到,获得积分10
10秒前
赘婿应助烟雨行舟采纳,获得10
10秒前
seal发布了新的文献求助10
11秒前
11秒前
12秒前
不吃香菜发布了新的文献求助10
12秒前
RC_Wang应助ZJJ采纳,获得10
12秒前
Chridy发布了新的文献求助10
13秒前
13秒前
asipilin完成签到,获得积分10
13秒前
鼻揩了转去应助lixoii采纳,获得20
13秒前
14秒前
万能图书馆应助Steve采纳,获得10
15秒前
15秒前
15秒前
颛颛完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794