LWUAVDet: A Lightweight UAV Object Detection Network on Edge Devices

计算机科学 GSM演进的增强数据速率 对象(语法) 计算机网络 计算机视觉 人工智能
作者
Xuanlin Min,Wei Zhou,Rui Hu,Yinyue Wu,Yiran Pang,Jun Yi
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (13): 24013-24023 被引量:20
标识
DOI:10.1109/jiot.2024.3388045
摘要

Real-time object detection on unmanned aerial vehicles (UAVs) poses a challenging issue due to the limited computing resources of edge devices. To address this problem, we propose a novel lightweight object detection network named LWUAVDet for real-time UAV applications. The detector comprises three core components: E-FPN, PixED Head, and Aux Head. Firstly, we develop an extended and refined topology in the Neck layer, called E-FPN, to enhance the multi-scale representation of each stage and alleviate the aliasing effect caused by the repetitive feature fusion of the Neck. Secondly, we propose a pixel encoder and decoder for dimension exchange between space and channel to achieve flexible and effective feature extraction in the Head layer, named PixED Head. Furthermore, Aux Head for the auxiliary task merely using the Head layer is presented for online distillation to enhance feature representation. Specially, in Aux Head, we introduce the weighted sum of Focal Loss and complete intersection over union loss for the cost matrix of the sample assigner to alleviate category imbalance and aspect ratio imbalance of the UAV data. The performance of our LWUAVDet is validated experimentally on the NVIDIA Jetson Xavier NX and Jetson Nano GPU devices. Extensive experiments demonstrate that the LWUAVDet models achieve a better trade-off between accuracy and latency on VisDrone, UAVDT, and VOC2012 datasets compared to state-of-the-art lightweight models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
七七七七完成签到 ,获得积分10
1秒前
TITANIUMJ发布了新的文献求助10
3秒前
Ava应助wada酱采纳,获得10
4秒前
NexusExplorer应助不安冷之采纳,获得10
4秒前
5秒前
kangbushui关注了科研通微信公众号
5秒前
罗亚亚发布了新的文献求助10
6秒前
可研小冲发布了新的文献求助10
6秒前
中中完成签到,获得积分10
6秒前
农夫完成签到,获得积分0
7秒前
爆米花应助DeepLearning采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
Akim应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
lilili应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Hilda007应助科研通管家采纳,获得10
9秒前
Hayat应助科研通管家采纳,获得10
9秒前
9秒前
共享精神应助梦雨甘采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
10秒前
10秒前
霞霞子关注了科研通微信公众号
10秒前
sl发布了新的文献求助10
10秒前
Jasper应助6a采纳,获得10
11秒前
zhangyueyue完成签到,获得积分10
12秒前
一天完成签到 ,获得积分10
13秒前
14秒前
15秒前
领导范儿应助可研小冲采纳,获得10
16秒前
17秒前
UP关注了科研通微信公众号
18秒前
何宗迅发布了新的文献求助10
19秒前
牛牛超人完成签到,获得积分10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125798
求助须知:如何正确求助?哪些是违规求助? 4329481
关于积分的说明 13491192
捐赠科研通 4164431
什么是DOI,文献DOI怎么找? 2282927
邀请新用户注册赠送积分活动 1283954
关于科研通互助平台的介绍 1223373