Exploring the Mechanism of Bufei Decoction in the Treatment of Bronchial Asthma Based on Network Pharmacology and Molecular Docking

哮喘 汤剂 医学 机制(生物学) 药理学 传统医学 内科学 认识论 哲学
作者
Yongguang Han,Xing Lv,Ya-Lan Tan,Yun-Shan Ding,Chaoyun Zhang,Hua Bian
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:28 (5): 768-780
标识
DOI:10.2174/0113862073285566240223144925
摘要

Background: Bufei decoction (BFD) is used in clinical practice to treat bronchial asthma (BA), although its molecular mechanism of action remains unclear. Objective: This study aimed to explore the molecular mechanism of BFD for treating BA. Methods: Network pharmacology and molecular docking predicted the molecular mechanism and the analysis results were verified using the ELISA kit and RT-qPCR. Results: There were 58 main active components and 121 potential targets in the BFD from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform( TCMSP), and 11 core targets were obtained from the protein-protein interactions(PPI) network. The gene ontology (GO) analysis found that the treatment of BA with BFD was mainly related to inflammatory reaction, membrane raft, cytokine activity, etc. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that it was mainly related to interleukin (IL)-17 signaling pathway, tumor necrosis factor (TNF) signaling pathway, PI3KAkt signaling pathway, etc. The molecular docking results showed that the main active ingredients had strong binding ability with core targets. BFD significantly reduced the TNF-α, IL-6, and IL-1β and increased the level of IL-10 in rats with BA. BFD also significantly reduced the mRNA level of PI3K, AKT1, and VEGFA while increasing the mRNA level of TP53 in rats. Conclusion: This study used network pharmacology methods to predict the potential active ingredients, targets, and pathways of BFD in treating BA and explore its possible molecular mechanism, which provided a theoretical basis for further study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
无聊的爆米花完成签到,获得积分10
2秒前
4秒前
忐忑的远山应助liuz采纳,获得10
4秒前
毛豆应助年轻以筠采纳,获得10
4秒前
5秒前
NZH发布了新的文献求助10
5秒前
HHH完成签到,获得积分10
5秒前
谦让的凝阳完成签到,获得积分10
6秒前
22鱼完成签到,获得积分10
8秒前
9秒前
搜集达人应助Aurora采纳,获得10
9秒前
9秒前
清爽的芷蕾完成签到,获得积分10
10秒前
10秒前
情怀应助ljlcyx采纳,获得20
12秒前
HHH发布了新的文献求助20
12秒前
meng发布了新的文献求助30
16秒前
17秒前
顾矜应助迷路睫毛采纳,获得10
19秒前
不愧是我完成签到 ,获得积分10
19秒前
过时的电灯胆完成签到 ,获得积分10
19秒前
安详的语蕊完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
彭于晏应助sss采纳,获得10
22秒前
sky完成签到,获得积分10
22秒前
ured发布了新的文献求助10
23秒前
redamancy发布了新的文献求助10
23秒前
24秒前
兜兜窦完成签到,获得积分10
24秒前
耳东陈完成签到 ,获得积分10
26秒前
吧唧吧唧发布了新的文献求助10
26秒前
花城诚成完成签到,获得积分10
27秒前
28秒前
CodeCraft应助meng采纳,获得10
28秒前
NZH发布了新的文献求助10
28秒前
Ava应助sky采纳,获得10
28秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3205719
求助须知:如何正确求助?哪些是违规求助? 2854829
关于积分的说明 8096809
捐赠科研通 2519796
什么是DOI,文献DOI怎么找? 1352730
科研通“疑难数据库(出版商)”最低求助积分说明 641587
邀请新用户注册赠送积分活动 612606