Attention Enhanced Multi-Agent Reinforcement Learning for Cooperative Spectrum Sensing in Cognitive Radio Networks

认知无线电 强化学习 钢筋 计算机科学 光谱(功能分析) 认知 人工智能 计算机网络 无线 工程类 电信 物理 心理学 神经科学 结构工程 量子力学
作者
Ang Gao,Qinyu Wang,Yongze Wang,Chengyuan Du,Yansu Hu,Wei Liang,Soon Xin Ng
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (7): 10464-10477 被引量:1
标识
DOI:10.1109/tvt.2024.3384393
摘要

Cooperative spectrum sensing (CSS) technology has been widely studied to enhance the spectrum sharing efficiency spatially and temporally in cognitive radio networks (CRNs), where the secondary users (SUs) can opportunistically reuse the channels already licensed to the primary users (PUs) for transmission by sensing spectrum holes. SUs are endowed with the global awareness of channels state by cooperating with each other without sweeping across the whole frequency bands. Since the channels occupation of PUs changes dynamically, the accurate sensing and swift information sharing are crucial for CRNs. The paper proposes a multi-agent deep reinforcement learning (DRL) based CSS method to help SUs efficiently finding a vacant channel by the cooperation with their partners. 1 Two partner selection algorithms are proposed named as Reliable Partner CSS and Adaptive Partner CSS, respectively. For the former, the partner selection is facilitated based on the historical sensing accuracy of SUs. While the latter takes the comprehensive consideration of both the reliability and geographical distribution of SUs to further improve the sensing accuracy. 2 Multi-agent deep deterministic policy gradient (MADDPG) is adopted to resist the dynamically varying channels condition as well as the high-dimension solution space. With the feature of 'centralized training and decentralized execution', each SU learns to interact with the environment and select a vacant channel for transmission by its partial observation, which greatly reduces the communication overhead caused by the cooperative spectrum sensing. 3 Numerical simulation demonstrates the convergence and availability of the proposed algorithms. No matter Reliable Partner CSS or Adaptive Partner CSS, the sensing accuracy can be greatly enhanced comparing with other non-cooperative or centralized learning approaches. Besides, the attention mechanism is introduced to MADDPG for Adaptive Partner CSS to reveal the behavior of SUs by the visualization of attention weight, which helps to partially interpret the 'black box' issue of DRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
似鱼发布了新的文献求助10
3秒前
sanxing发布了新的文献求助10
3秒前
wang完成签到,获得积分10
4秒前
孝铮完成签到 ,获得积分20
5秒前
喜东东发布了新的文献求助30
5秒前
王了了完成签到 ,获得积分10
9秒前
bkagyin应助梧wu采纳,获得10
9秒前
国服懒羊羊完成签到,获得积分10
10秒前
skmksd发布了新的文献求助10
11秒前
傲娇而又骄傲完成签到 ,获得积分10
13秒前
13秒前
似鱼完成签到,获得积分10
14秒前
简单代芙完成签到,获得积分20
16秒前
17秒前
暗中观察发布了新的文献求助10
17秒前
18秒前
llg完成签到,获得积分10
23秒前
23秒前
23秒前
cherish完成签到,获得积分10
24秒前
Inanopig完成签到,获得积分10
24秒前
柠檬发布了新的文献求助10
25秒前
Akim应助杜若飞采纳,获得10
25秒前
钱来完成签到,获得积分10
27秒前
共享精神应助淡然鞅采纳,获得10
27秒前
理li发布了新的文献求助30
28秒前
28秒前
无花果应助高贵季节采纳,获得10
29秒前
852发布了新的文献求助10
30秒前
半岛岛发布了新的文献求助10
31秒前
星辰大海应助美好芳采纳,获得10
31秒前
ding应助默默纲采纳,获得30
31秒前
33秒前
沉默的红牛完成签到 ,获得积分10
33秒前
wfs完成签到,获得积分10
34秒前
34秒前
OnionJJ完成签到,获得积分10
34秒前
35秒前
eternity136完成签到,获得积分10
35秒前
35秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799229
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194