Attention Enhanced Multi-Agent Reinforcement Learning for Cooperative Spectrum Sensing in Cognitive Radio Networks

认知无线电 强化学习 钢筋 计算机科学 光谱(功能分析) 认知 人工智能 计算机网络 无线 工程类 电信 物理 心理学 神经科学 结构工程 量子力学
作者
Ang Gao,Qinyu Wang,Yongze Wang,Chengyuan Du,Yansu Hu,Wei Liang,Soon Xin Ng
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (7): 10464-10477 被引量:1
标识
DOI:10.1109/tvt.2024.3384393
摘要

Cooperative spectrum sensing (CSS) technology has been widely studied to enhance the spectrum sharing efficiency spatially and temporally in cognitive radio networks (CRNs), where the secondary users (SUs) can opportunistically reuse the channels already licensed to the primary users (PUs) for transmission by sensing spectrum holes. SUs are endowed with the global awareness of channels state by cooperating with each other without sweeping across the whole frequency bands. Since the channels occupation of PUs changes dynamically, the accurate sensing and swift information sharing are crucial for CRNs. The paper proposes a multi-agent deep reinforcement learning (DRL) based CSS method to help SUs efficiently finding a vacant channel by the cooperation with their partners. 1 Two partner selection algorithms are proposed named as Reliable Partner CSS and Adaptive Partner CSS, respectively. For the former, the partner selection is facilitated based on the historical sensing accuracy of SUs. While the latter takes the comprehensive consideration of both the reliability and geographical distribution of SUs to further improve the sensing accuracy. 2 Multi-agent deep deterministic policy gradient (MADDPG) is adopted to resist the dynamically varying channels condition as well as the high-dimension solution space. With the feature of 'centralized training and decentralized execution', each SU learns to interact with the environment and select a vacant channel for transmission by its partial observation, which greatly reduces the communication overhead caused by the cooperative spectrum sensing. 3 Numerical simulation demonstrates the convergence and availability of the proposed algorithms. No matter Reliable Partner CSS or Adaptive Partner CSS, the sensing accuracy can be greatly enhanced comparing with other non-cooperative or centralized learning approaches. Besides, the attention mechanism is introduced to MADDPG for Adaptive Partner CSS to reveal the behavior of SUs by the visualization of attention weight, which helps to partially interpret the 'black box' issue of DRL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
崽崽纯发布了新的文献求助10
刚刚
科研通AI6.1应助elang采纳,获得10
1秒前
2秒前
bkagyin应助KaleemUllah采纳,获得10
3秒前
所所应助清风醉采纳,获得10
3秒前
cmu1h发布了新的文献求助10
3秒前
EVJ关闭了EVJ文献求助
3秒前
冰阔罗完成签到,获得积分10
4秒前
薄年完成签到,获得积分10
4秒前
datiancaihaha发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助xci采纳,获得10
6秒前
嘟嘟豆806发布了新的文献求助10
6秒前
科目三应助崽崽纯采纳,获得10
7秒前
香蕉觅云应助万1采纳,获得10
8秒前
8秒前
科目三应助科研小白鼠采纳,获得16
9秒前
9秒前
缓慢如南发布了新的文献求助10
10秒前
10秒前
腼腆的冷玉完成签到,获得积分10
11秒前
许丫丫完成签到,获得积分10
11秒前
12秒前
14秒前
14秒前
gxh发布了新的文献求助20
14秒前
星辰大海应助111采纳,获得10
16秒前
赘婿应助SKY采纳,获得10
16秒前
量子星尘发布了新的文献求助30
16秒前
量子星尘发布了新的文献求助10
16秒前
June发布了新的文献求助10
16秒前
三方完成签到,获得积分10
17秒前
Jasper应助wa采纳,获得10
17秒前
yltstt完成签到,获得积分10
17秒前
17秒前
18秒前
Narcissus完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734851
求助须知:如何正确求助?哪些是违规求助? 5356584
关于积分的说明 15327858
捐赠科研通 4879364
什么是DOI,文献DOI怎么找? 2621846
邀请新用户注册赠送积分活动 1571071
关于科研通互助平台的介绍 1527841