兴奋剂
硼
材料科学
离子
钠
氧化物
化学工程
阴极
纳米技术
化学
光电子学
物理化学
冶金
有机化学
工程类
作者
Yuzhen Dang,Zhe Xu,Yurong Wu,Runguo Zheng,Zhiyuan Wang,Xiaopin Lin,Yanguo Liu,Zhengyao Li,Kai Sun,Dongfeng Chen,Dan Wang
标识
DOI:10.1016/j.jechem.2024.03.055
摘要
O3-type layered metal oxides hold great promise for sodium-ion batteries cathodes owing to their energy density advantage. However, the severe irreversible phase transition and sluggish Na+ diffusion kinetics pose significant challenges to achieve high-performance layered cathodes. Herein, a boron-doped O3-type high entropy oxide Na(Fe0.2Co0.15Cu0.05Ni0.2Mn0.2Ti0.2)B0.02O2 (NFCCNMT-B0.02) is designed and the covalent B-O bonds with high entropy configuration ensures a robust layered structure. The obtained cathode NFCCNMT-B0.02 exhibits impressive cycling performance (capacity retention of 95% and 82% after 100 cycles and 300 cycles at 1 C and 10 C, respectively) and outstanding rate capability (capacity of 83 mAh g−1 at 10 C). Furthermore, the NFCCNMT-B0.02 demonstrates a superior wide-temperature performance, maintaining the same capacity level (113.4 mAh g−1@-20 ℃, 121 mAh g−1@25 ℃, and 119 mAh g−1@60 ℃) and superior cycle stability (90% capacity retention after 100 cycles at 1 C at -20 ℃). The high-entropy configuration design with boron doping strategy contributes to the excellent sodium-ion storage performance. The high-entropy configuration design effectively suppresses irreversible phase transitions accompanied by small volume changes (ΔV=0.65 \AA3). B ions doping expands the Na layer distance and enlarges the P3 phase region, thereby enhancing Na+ diffusion kinetics. This work offers valuable insights into design of high-performance layered cathodes for sodium-ion batteries operating across a wide temperature.
科研通智能强力驱动
Strongly Powered by AbleSci AI