Predicting the dynamic behavior of a magnetocaloric cooling prototype via artificial neural networks

人工神经网络 磁制冷 材料科学 人工智能 机械工程 计算机科学 控制工程 工程类 物理 磁化 量子力学 磁场
作者
Pedro Mário Cruz e Silva,Guilherme Fidelis Peixer,Anderson Lorenzoni,Yan Azeredo,Rodolfo C.C. Flesch,Jaime Lozano,Jader R. Barbosa
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:248: 123060-123060
标识
DOI:10.1016/j.applthermaleng.2024.123060
摘要

Although magnetocaloric cooling is considered a promising long-term alternative to vapor compression, recent prototype developments have not yet made this technology commercially competitive, primarily due to its high energy consumption and lack of cost-effective, long-term mechanically-chemically stable materials. To address the first issue and understand how the efficiency of magnetocaloric systems can be improved, dynamic models can offer valuable insights into their transient operation. This work focuses on the development of an artificial neural network with experimental data to model the dynamic operation of a magnetic refrigeration system. Through a design of experiments approach, we propose excitation signals for the identification experiment, involving five manipulated variables and one selected disturbance as inputs, with the output temperature of the cold manifold and power consumption as the target parameters. We chose a nonlinear autoregressive artificial neural network with exogenous inputs to model the transient operation of the system. The temperature model achieved R2 values of 0.995 and 0.955 for the 1-step and 90-step ahead predictions, respectively. Similarly, the power consumption model achieved R2 values of 0.988 and 0.949 for the 1-step and 90-step ahead predictions, respectively. These performance metrics were evaluated on the test sets that were not used for training the models, highlighting the robustness and accuracy of the models in both short-term and long-term predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Jin采纳,获得10
刚刚
1秒前
赘婿应助linnnn采纳,获得10
1秒前
丶Dawn完成签到,获得积分10
2秒前
2秒前
活泼人生完成签到 ,获得积分10
3秒前
鱼鱼发布了新的文献求助10
3秒前
个性的莛完成签到,获得积分10
5秒前
文字头-D完成签到,获得积分10
6秒前
PUTIDAXIAN发布了新的文献求助10
7秒前
8秒前
9秒前
隐形曼青应助微笑的语芙采纳,获得10
10秒前
jjj发布了新的文献求助30
11秒前
14秒前
14秒前
酷炫山柳完成签到,获得积分10
14秒前
thirteen完成签到 ,获得积分10
14秒前
PUTIDAXIAN完成签到,获得积分10
15秒前
Ava应助段盼兰采纳,获得30
17秒前
FashionBoy应助活泼人生采纳,获得10
17秒前
tzt关注了科研通微信公众号
17秒前
19秒前
may完成签到,获得积分10
19秒前
Aliks完成签到,获得积分10
19秒前
老实的逊完成签到,获得积分10
20秒前
22秒前
22秒前
23秒前
linnnn发布了新的文献求助10
23秒前
Singularity应助111采纳,获得10
23秒前
24秒前
25秒前
26秒前
我要啃木头完成签到,获得积分10
27秒前
27秒前
27秒前
28秒前
今晚打老虎完成签到,获得积分10
30秒前
llp发布了新的文献求助10
30秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158219
求助须知:如何正确求助?哪些是违规求助? 2809498
关于积分的说明 7882396
捐赠科研通 2468007
什么是DOI,文献DOI怎么找? 1313841
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601943