Predicting the dynamic behavior of a magnetocaloric cooling prototype via artificial neural networks

人工神经网络 磁制冷 材料科学 人工智能 机械工程 计算机科学 控制工程 工程类 物理 磁化 量子力学 磁场
作者
Pedro Mário Cruz e Silva,Guilherme Fidelis Peixer,Anderson Lorenzoni,Yan Azeredo,Rodolfo C.C. Flesch,Jaime Lozano,Jader R. Barbosa
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:248: 123060-123060
标识
DOI:10.1016/j.applthermaleng.2024.123060
摘要

Although magnetocaloric cooling is considered a promising long-term alternative to vapor compression, recent prototype developments have not yet made this technology commercially competitive, primarily due to its high energy consumption and lack of cost-effective, long-term mechanically-chemically stable materials. To address the first issue and understand how the efficiency of magnetocaloric systems can be improved, dynamic models can offer valuable insights into their transient operation. This work focuses on the development of an artificial neural network with experimental data to model the dynamic operation of a magnetic refrigeration system. Through a design of experiments approach, we propose excitation signals for the identification experiment, involving five manipulated variables and one selected disturbance as inputs, with the output temperature of the cold manifold and power consumption as the target parameters. We chose a nonlinear autoregressive artificial neural network with exogenous inputs to model the transient operation of the system. The temperature model achieved R2 values of 0.995 and 0.955 for the 1-step and 90-step ahead predictions, respectively. Similarly, the power consumption model achieved R2 values of 0.988 and 0.949 for the 1-step and 90-step ahead predictions, respectively. These performance metrics were evaluated on the test sets that were not used for training the models, highlighting the robustness and accuracy of the models in both short-term and long-term predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研包发布了新的文献求助10
1秒前
1秒前
1秒前
拾柒发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
HAHA发布了新的文献求助10
3秒前
4秒前
seedcui发布了新的文献求助10
4秒前
123发布了新的文献求助10
5秒前
HAHA发布了新的文献求助10
5秒前
小二郎应助乐观的颦采纳,获得10
5秒前
HAHA发布了新的文献求助10
5秒前
HAHA发布了新的文献求助10
5秒前
AslenK发布了新的文献求助10
5秒前
HAHA发布了新的文献求助10
5秒前
5秒前
HAHA发布了新的文献求助10
6秒前
HAHA发布了新的文献求助10
6秒前
HAHA发布了新的文献求助10
6秒前
HAHA发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
8秒前
静笃发布了新的文献求助10
9秒前
10秒前
10秒前
pluto应助ww采纳,获得10
11秒前
CodeCraft应助luckyhan采纳,获得10
12秒前
安雯完成签到 ,获得积分10
13秒前
自然幻竹完成签到,获得积分10
14秒前
niu完成签到 ,获得积分10
15秒前
七慕凉应助小可采纳,获得20
15秒前
16秒前
shufessm完成签到,获得积分0
16秒前
18秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536900
求助须知:如何正确求助?哪些是违规求助? 4624585
关于积分的说明 14592312
捐赠科研通 4565008
什么是DOI,文献DOI怎么找? 2502121
邀请新用户注册赠送积分活动 1480851
关于科研通互助平台的介绍 1452093