Prediction of Drug-Induced Liver Injury: From Molecular Physicochemical Properties and Scaffold Architectures to Machine Learning Approaches

脚手架 肝损伤 药品 计算机科学 纳米技术 材料科学 药理学 医学 程序设计语言
作者
Yulong Zhao,Zhoudong Zhang,Kai Wang,Jie Jia,Yaxuan Wang,Huanqiu Li,Xiaotian Kong,Sheng Tian
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4268191/v1
摘要

Abstract The process of developing new drugs is widely acknowledged as being time-intensive and requiring substantial financial investment. Despite ongoing efforts to reduce time and expenses in drug development, ensuring medication safety remains an urgent problem. One of the major problems involved in drug development is hepatotoxicity, specifically known as drug-induced liver injury (DILI). The popularity of new drugs often poses a significant barrier during development and frequently leads to their recall after launch. In silico methods have many advantages compared with traditional in vivo and in vitro assays. To establish a more precise and reliable prediction model, it is necessary to utilize an extensive and high-quality database consisting of information on drug molecule properties and structural patterns. In addition, we should also carefully select appropriate molecular descriptors that can be used to accurately depict compound characteristics. The aim of this study was to conduct a comprehensive investigation into the prediction of DILI. First, we conducted a comparative analysis of the physicochemical properties of extensively well-prepared DILI-positive and DILI-negative compounds. Then, we used classic substructure dissection methods to identify structural pattern differences between these two different types of chemical molecules. These findings indicate that it is not feasible to establish property or substructure-based rules for distinguishing between DILI-positive and DILI-negative compounds. Finally, we developed quantitative classification models for predicting DILI using the naïve Bayes classifier (NBC) and recursive partitioning (RP) machine learning techniques. The optimal DILI prediction model was obtained using NBC, which combines 21 physicochemical properties, the VolSurf descriptors, and the LCFP_10 fingerprint set. This model achieved a global accuracy (GA) of 0.855 and an area under the curve (AUC) of 0.704 for the training set, while the corresponding values were 0.619 and 0.674 for the test set, respectively. Moreover, indicative substructural fragments favorable or unfavorable for DILI were identified from the best naïve Bayesian classification model. These findings may help prioritize lead compounds in the early stage of drug development pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助扶苏采纳,获得10
刚刚
搜集达人应助李大柱采纳,获得10
刚刚
PhD-SCAU完成签到,获得积分10
1秒前
冰糖胡芦完成签到,获得积分10
2秒前
田乐天完成签到 ,获得积分10
2秒前
杨仔发布了新的文献求助10
2秒前
李大侠发布了新的文献求助10
3秒前
杨杨杨发布了新的文献求助10
3秒前
3秒前
凌晴发布了新的文献求助30
3秒前
Cindy发布了新的文献求助10
4秒前
黑大帅完成签到,获得积分10
5秒前
5秒前
5秒前
0411345完成签到,获得积分10
6秒前
6秒前
6秒前
刘齐完成签到,获得积分10
6秒前
Roach完成签到,获得积分10
6秒前
Ava应助lll采纳,获得10
6秒前
贰级完成签到,获得积分10
7秒前
7秒前
俞绯发布了新的文献求助10
7秒前
再美完成签到,获得积分10
7秒前
Aurorademon完成签到,获得积分10
8秒前
阿飞完成签到,获得积分10
8秒前
星期八完成签到,获得积分10
8秒前
懒羊羊发布了新的文献求助10
9秒前
zixian完成签到,获得积分10
9秒前
9秒前
兴奋的蜡烛完成签到,获得积分10
9秒前
LYB1a吕完成签到,获得积分10
10秒前
科研狗完成签到,获得积分10
11秒前
火星上宛秋完成签到 ,获得积分10
11秒前
bkagyin应助追寻宛海采纳,获得17
11秒前
xixi完成签到,获得积分10
11秒前
小蘑菇应助w_w采纳,获得30
12秒前
德鲁大叔完成签到,获得积分10
12秒前
pencil123完成签到,获得积分10
13秒前
白斯特发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968934
求助须知:如何正确求助?哪些是违规求助? 3513835
关于积分的说明 11170238
捐赠科研通 3249167
什么是DOI,文献DOI怎么找? 1794650
邀请新用户注册赠送积分活动 875278
科研通“疑难数据库(出版商)”最低求助积分说明 804755