已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Drug-Induced Liver Injury: From Molecular Physicochemical Properties and Scaffold Architectures to Machine Learning Approaches

脚手架 肝损伤 药品 计算机科学 纳米技术 材料科学 药理学 医学 程序设计语言
作者
Yulong Zhao,Zhoudong Zhang,Kai Wang,Jie Jia,Yaxuan Wang,Huanqiu Li,Xiaotian Kong,Sheng Tian
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4268191/v1
摘要

Abstract The process of developing new drugs is widely acknowledged as being time-intensive and requiring substantial financial investment. Despite ongoing efforts to reduce time and expenses in drug development, ensuring medication safety remains an urgent problem. One of the major problems involved in drug development is hepatotoxicity, specifically known as drug-induced liver injury (DILI). The popularity of new drugs often poses a significant barrier during development and frequently leads to their recall after launch. In silico methods have many advantages compared with traditional in vivo and in vitro assays. To establish a more precise and reliable prediction model, it is necessary to utilize an extensive and high-quality database consisting of information on drug molecule properties and structural patterns. In addition, we should also carefully select appropriate molecular descriptors that can be used to accurately depict compound characteristics. The aim of this study was to conduct a comprehensive investigation into the prediction of DILI. First, we conducted a comparative analysis of the physicochemical properties of extensively well-prepared DILI-positive and DILI-negative compounds. Then, we used classic substructure dissection methods to identify structural pattern differences between these two different types of chemical molecules. These findings indicate that it is not feasible to establish property or substructure-based rules for distinguishing between DILI-positive and DILI-negative compounds. Finally, we developed quantitative classification models for predicting DILI using the naïve Bayes classifier (NBC) and recursive partitioning (RP) machine learning techniques. The optimal DILI prediction model was obtained using NBC, which combines 21 physicochemical properties, the VolSurf descriptors, and the LCFP_10 fingerprint set. This model achieved a global accuracy (GA) of 0.855 and an area under the curve (AUC) of 0.704 for the training set, while the corresponding values were 0.619 and 0.674 for the test set, respectively. Moreover, indicative substructural fragments favorable or unfavorable for DILI were identified from the best naïve Bayesian classification model. These findings may help prioritize lead compounds in the early stage of drug development pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小象腿完成签到,获得积分10
3秒前
彩色德天完成签到,获得积分10
4秒前
4秒前
5秒前
12秒前
风秋千完成签到,获得积分10
12秒前
难过千易发布了新的文献求助10
12秒前
超级灰狼完成签到 ,获得积分10
13秒前
13秒前
15秒前
18秒前
kdjm688发布了新的文献求助10
18秒前
Lucky完成签到,获得积分10
18秒前
林子青完成签到,获得积分10
19秒前
19秒前
焦立超发布了新的文献求助10
20秒前
万能图书馆应助芯之痕采纳,获得10
23秒前
554802336应助hky采纳,获得20
23秒前
Miriammmmm发布了新的文献求助30
24秒前
huangy发布了新的文献求助30
24秒前
wab完成签到,获得积分0
27秒前
尼大王完成签到,获得积分10
28秒前
Zz关闭了Zz文献求助
32秒前
33秒前
33秒前
柠檬水发布了新的文献求助10
37秒前
chen发布了新的文献求助10
39秒前
柠檬水完成签到,获得积分10
44秒前
45秒前
哈哈发布了新的文献求助10
45秒前
Ava应助齐羽采纳,获得10
47秒前
风秋千发布了新的文献求助10
48秒前
50秒前
快乐茗发布了新的文献求助10
51秒前
科目三应助Lucille采纳,获得10
51秒前
fancy完成签到 ,获得积分10
54秒前
54秒前
悄悄发布了新的文献求助10
58秒前
苗条小甜瓜完成签到,获得积分10
59秒前
星星炒蛋关注了科研通微信公众号
59秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976531
求助须知:如何正确求助?哪些是违规求助? 3520576
关于积分的说明 11204042
捐赠科研通 3257210
什么是DOI,文献DOI怎么找? 1798648
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806555