Prediction of Drug-Induced Liver Injury: From Molecular Physicochemical Properties and Scaffold Architectures to Machine Learning Approaches

脚手架 肝损伤 药品 计算机科学 纳米技术 材料科学 药理学 医学 程序设计语言
作者
Yulong Zhao,Zhoudong Zhang,Kai Wang,Jie Jia,Yaxuan Wang,Huanqiu Li,Xiaotian Kong,Sheng Tian
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4268191/v1
摘要

Abstract The process of developing new drugs is widely acknowledged as being time-intensive and requiring substantial financial investment. Despite ongoing efforts to reduce time and expenses in drug development, ensuring medication safety remains an urgent problem. One of the major problems involved in drug development is hepatotoxicity, specifically known as drug-induced liver injury (DILI). The popularity of new drugs often poses a significant barrier during development and frequently leads to their recall after launch. In silico methods have many advantages compared with traditional in vivo and in vitro assays. To establish a more precise and reliable prediction model, it is necessary to utilize an extensive and high-quality database consisting of information on drug molecule properties and structural patterns. In addition, we should also carefully select appropriate molecular descriptors that can be used to accurately depict compound characteristics. The aim of this study was to conduct a comprehensive investigation into the prediction of DILI. First, we conducted a comparative analysis of the physicochemical properties of extensively well-prepared DILI-positive and DILI-negative compounds. Then, we used classic substructure dissection methods to identify structural pattern differences between these two different types of chemical molecules. These findings indicate that it is not feasible to establish property or substructure-based rules for distinguishing between DILI-positive and DILI-negative compounds. Finally, we developed quantitative classification models for predicting DILI using the naïve Bayes classifier (NBC) and recursive partitioning (RP) machine learning techniques. The optimal DILI prediction model was obtained using NBC, which combines 21 physicochemical properties, the VolSurf descriptors, and the LCFP_10 fingerprint set. This model achieved a global accuracy (GA) of 0.855 and an area under the curve (AUC) of 0.704 for the training set, while the corresponding values were 0.619 and 0.674 for the test set, respectively. Moreover, indicative substructural fragments favorable or unfavorable for DILI were identified from the best naïve Bayesian classification model. These findings may help prioritize lead compounds in the early stage of drug development pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助迷人素采纳,获得10
1秒前
鑫鑫发布了新的文献求助10
2秒前
4秒前
科研通AI2S应助pgg采纳,获得10
4秒前
Singularity应助Luu采纳,获得10
5秒前
suijinichen完成签到 ,获得积分10
5秒前
zzz发布了新的文献求助10
8秒前
Leach完成签到 ,获得积分10
9秒前
兰亭序发布了新的文献求助10
9秒前
章鱼完成签到,获得积分10
10秒前
10秒前
年幼时完成签到 ,获得积分10
13秒前
13秒前
哈克发布了新的文献求助10
13秒前
高大鸭子完成签到 ,获得积分10
14秒前
淡淡的幻竹完成签到,获得积分10
15秒前
Qinjichao发布了新的文献求助10
16秒前
Thanatos完成签到,获得积分10
20秒前
泌外科研完成签到,获得积分10
21秒前
Viva完成签到,获得积分10
21秒前
嗯哼应助科研通管家采纳,获得20
21秒前
8R60d8应助科研通管家采纳,获得10
21秒前
CipherSage应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
8R60d8应助科研通管家采纳,获得10
22秒前
8R60d8应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
英姑应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
大模型应助cc采纳,获得10
23秒前
27秒前
aaron完成签到,获得积分10
27秒前
28秒前
29秒前
小肥兔完成签到 ,获得积分10
31秒前
32秒前
壮观的擎完成签到 ,获得积分10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161703
求助须知:如何正确求助?哪些是违规求助? 2812994
关于积分的说明 7898049
捐赠科研通 2471906
什么是DOI,文献DOI怎么找? 1316269
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129