MASSFormer: Memory-Augmented Spectral-Spatial Transformer for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 计算机视觉 模式识别(心理学) 上下文图像分类 遥感 图像(数学) 地质学
作者
Le Sun,Hang Zhang,Yuhui Zheng,Zebin Wu,Zhonglin Ye,Haixing Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:16
标识
DOI:10.1109/tgrs.2024.3392264
摘要

In recent years, convolutional neural networks (CNNs) have achieved remarkable success in hyperspectral image (HSI) classification tasks, primarily due to their outstanding spatial feature extraction capabilities. However, CNNs struggle to capture the diagnostic spectral information inherent in HSI. In contrast, vision transformers exhibit formidable prowess in handling spectral sequence information and excelling at capturing long-range correlations between pixels and bands. Nevertheless, due to the information loss during propagation, some existing transformer-based classification methods struggle to form sufficient spectral-spatial information mixing. To mitigate these limitations, we propose a memory-augmented spectral-spatial transformer (MASSFormer) for HSI classification. Specifically, MASSFormer incorporates two efficacious modules, the memory tokenizer (MT) and the memory-augmented transformer encoder (MATE). The former serves to transform spectral-spatial features into memory tokens for storing prior knowledge. The latter aims to extend traditional multi-head self-attention (MHSA) operations by incorporating these memory tokens, enabling ample information blending while alleviating the potential depth decay in the model, and consequently improving the model's classification performance. Extensive experiments conducted on four benchmark datasets demonstrate that the proposed method outperforms state-of-the-art methods. The source code is available at https://github.com/hz63/MASSFormer for the sake of reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yydssss完成签到,获得积分10
刚刚
空白完成签到 ,获得积分10
1秒前
风一样完成签到,获得积分10
1秒前
1秒前
yanziwu94完成签到,获得积分10
3秒前
SC武完成签到,获得积分10
4秒前
观光完成签到,获得积分10
5秒前
黎黎完成签到,获得积分10
6秒前
流星飞完成签到,获得积分10
6秒前
7秒前
非也的非也完成签到,获得积分10
7秒前
ROMANTIC完成签到 ,获得积分10
8秒前
xiaowang完成签到,获得积分10
8秒前
年轻的绿凝完成签到,获得积分10
9秒前
Wait完成签到,获得积分10
9秒前
华仔应助huofuman采纳,获得10
9秒前
女娇娥完成签到,获得积分10
10秒前
some应助zh20130采纳,获得10
10秒前
11秒前
11秒前
陈少华发布了新的文献求助10
12秒前
wanjingwan完成签到 ,获得积分10
12秒前
ly完成签到,获得积分10
13秒前
13秒前
13秒前
陈先生完成签到,获得积分10
14秒前
三寿完成签到,获得积分10
14秒前
GU完成签到,获得积分10
15秒前
duke发布了新的文献求助10
16秒前
牧星河完成签到,获得积分10
16秒前
16秒前
慕青应助Lengbo采纳,获得10
16秒前
似水流年完成签到 ,获得积分10
17秒前
文艺鞋子完成签到,获得积分10
17秒前
FashionBoy应助11采纳,获得10
18秒前
Junlei完成签到,获得积分10
20秒前
Sean发布了新的文献求助10
20秒前
ytong完成签到,获得积分10
20秒前
huofuman完成签到,获得积分10
21秒前
田様应助文艺鞋子采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499089
关于积分的说明 11093922
捐赠科研通 3229669
什么是DOI,文献DOI怎么找? 1785711
邀请新用户注册赠送积分活动 869476
科研通“疑难数据库(出版商)”最低求助积分说明 801478