MASSFormer: Memory-Augmented Spectral-Spatial Transformer for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 计算机视觉 模式识别(心理学) 上下文图像分类 遥感 图像(数学) 地质学
作者
Le Sun,Hang Zhang,Yuhui Zheng,Zebin Wu,Zhonglin Ye,Haixing Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:27
标识
DOI:10.1109/tgrs.2024.3392264
摘要

In recent years, convolutional neural networks (CNNs) have achieved remarkable success in hyperspectral image (HSI) classification tasks, primarily due to their outstanding spatial feature extraction capabilities. However, CNNs struggle to capture the diagnostic spectral information inherent in HSI. In contrast, vision transformers exhibit formidable prowess in handling spectral sequence information and excelling at capturing long-range correlations between pixels and bands. Nevertheless, due to the information loss during propagation, some existing transformer-based classification methods struggle to form sufficient spectral-spatial information mixing. To mitigate these limitations, we propose a memory-augmented spectral-spatial transformer (MASSFormer) for HSI classification. Specifically, MASSFormer incorporates two efficacious modules, the memory tokenizer (MT) and the memory-augmented transformer encoder (MATE). The former serves to transform spectral-spatial features into memory tokens for storing prior knowledge. The latter aims to extend traditional multi-head self-attention (MHSA) operations by incorporating these memory tokens, enabling ample information blending while alleviating the potential depth decay in the model, and consequently improving the model's classification performance. Extensive experiments conducted on four benchmark datasets demonstrate that the proposed method outperforms state-of-the-art methods. The source code is available at https://github.com/hz63/MASSFormer for the sake of reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coffee完成签到,获得积分10
刚刚
爱笑的映冬完成签到 ,获得积分10
刚刚
刚刚
风趣翠霜应助单纯的乐枫采纳,获得10
刚刚
Owen应助Trista0036采纳,获得30
刚刚
咚咚完成签到,获得积分10
1秒前
1秒前
1秒前
yan完成签到,获得积分10
1秒前
queen发布了新的文献求助10
3秒前
3秒前
皇家咖啡完成签到 ,获得积分10
3秒前
上官若男应助LZhao01采纳,获得10
3秒前
再睡一夏完成签到,获得积分10
4秒前
笨笨访冬发布了新的文献求助10
4秒前
彭于晏应助知识型采纳,获得10
4秒前
张怡博完成签到 ,获得积分10
5秒前
kk完成签到,获得积分10
5秒前
陈亚茹完成签到,获得积分10
5秒前
小二郎应助sxy采纳,获得10
5秒前
5秒前
shan完成签到,获得积分10
6秒前
小豆豆完成签到,获得积分10
6秒前
XHY发布了新的文献求助10
6秒前
6秒前
早早完成签到,获得积分10
6秒前
7秒前
jias发布了新的文献求助10
7秒前
7秒前
登山香菇完成签到,获得积分10
8秒前
8秒前
菜菜爸爸发布了新的文献求助10
8秒前
kiki完成签到,获得积分10
8秒前
全球发布了新的文献求助10
8秒前
灰灰发布了新的文献求助10
8秒前
jxj完成签到,获得积分10
8秒前
Yu完成签到,获得积分20
8秒前
9秒前
今后应助shan采纳,获得10
9秒前
euruss发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402319
求助须知:如何正确求助?哪些是违规求助? 4520881
关于积分的说明 14082899
捐赠科研通 4434954
什么是DOI,文献DOI怎么找? 2434495
邀请新用户注册赠送积分活动 1426678
关于科研通互助平台的介绍 1405415