DFT insights into doping and oxygen vacancy effects on CO and CO₂ adsorptions over CuAl2O4 spinel surfaces

尖晶石 吸附 催化作用 化学 兴奋剂 氧气 空位缺陷 无机化学 化学工程 材料科学 结晶学 物理化学 冶金 有机化学 光电子学 工程类
作者
Rundong Wu,Li Li,Zhang‐Hui Lu,Chunyan Sun,Lihong Cheng,Runping Ye,Rongbin Zhang,Qiang Li,Gang Feng
出处
期刊:Journal of Catalysis [Elsevier]
卷期号:434: 115502-115502 被引量:5
标识
DOI:10.1016/j.jcat.2024.115502
摘要

Introducing transition metals into CuAl2O4 spinel enhances catalyst stability and Cu sintering resistance in methanol steam reforming. Yet, the influence of doping on vacancy formation and the adsorption behaviors of CO2 (the primary product) and CO (the notorious byproduct) remains unclear. Herein, we employed DFT + U to investigate CO and CO2 adsorption on perfect, M-doped (Fe, Co, and Ni), and M-doped oxygen-deficient CuAl2O4 spinel (1 0 0) and (1 1 0) surfaces. We find that stronger CO adsorption on (1 0 0) than (1 1 0) surfaces across all M-doped surfaces, while CO2 adsorbs more stronger on (1 1 0) surfaces. The weakened CO adsorptions are observed on Fe and Ni-doped surfaces, demonstrating that doping plays a significant role in improving the resistance to CO poisoning. Co-doping promotes CO adsorption via a 'CO3′-like structure on CuAl2O4(1 1 0) surface and boosts the CO oxidation. Furthermore, infrared spectroscopy simulation indicates that the vibrational frequencies for CO linear adsorption, formation of bent 'CO2′ and 'CO3′-like structures are within the ranges of 2042–2078, 1463–1566, and 1497–1816 cm−1, respectively. In addition, Ov on Ni-doped surfaces can significantly strengthen the CO2 adsorption by 0.6–1.3 eV, highlighting the doping and oxygen-defect engineering in enhancing the CO2 capture. This research uncovers the critical impact of metal doping and oxygen vacancies on CO and CO2 adsorptions over CuAl2O4 spinel catalyst, providing insights for developing catalysts with improved resistance to CO poisoning and enhanced CO oxidation which is vital for methanol steam reforming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
d董完成签到,获得积分10
1秒前
2秒前
Orange应助luoluo采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
JamesYang发布了新的文献求助10
4秒前
欧哈纳发布了新的文献求助10
4秒前
orixero应助diplomat采纳,获得10
5秒前
5秒前
希望天下0贩的0应助南北采纳,获得10
6秒前
8秒前
Ellalala发布了新的文献求助10
8秒前
汉堡包应助sunhealth采纳,获得10
9秒前
JamesPei应助JamesYang采纳,获得10
10秒前
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
orixero应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
烟花应助科研通管家采纳,获得30
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
我是老大应助liuhang采纳,获得50
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
可靠小懒虫完成签到,获得积分10
11秒前
11秒前
BCM发布了新的文献求助30
12秒前
量子星尘发布了新的文献求助10
14秒前
123发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729141
求助须知:如何正确求助?哪些是违规求助? 5316369
关于积分的说明 15315857
捐赠科研通 4876150
什么是DOI,文献DOI怎么找? 2619263
邀请新用户注册赠送积分活动 1568820
关于科研通互助平台的介绍 1525317