A three-dimensional reconstruction of rough fracture surfaces of hydraulically fractured rock outcrops is carried out by casting process, a large-scale experimental setup for visualizing rough fractures is built to perform proppant transport experiments. The typical characteristics of proppant transport and placement in rough fractures and its intrinsic mechanisms are investigated, and the influences of fracture inclination, fracture width and fracturing fluid viscosity on proppant transport and placement in rough fractures are analyzed. The results show that the rough fractures cause variations in the shape of the flow channel and the fluid flow pattern, resulting in the bridging buildup during proppant transport to form unfilled zone, the emergence of multiple complex flow patterns such as channeling, reverse flow and bypassing of sand-carrying fluid, and the influence on the stability of the sand dune. The proppant has a higher placement rate in inclined rough fractures, with a maximum increase of 22.16 percentage points in the experiments compared to vertical fractures, but exhibits poor stability of the sand dune. Reduced fracture width aggravates the bridging of proppant and induces higher pumping pressure. Increasing the viscosity of the fracturing fluid can weaken the proppant bridging phenomenon caused by the rough fractures.