Data-Enabled Human-Machine Cooperative Driving Decoupled from Various Driver Steering Characteristics and Vehicle Dynamics

车辆动力学 计算机科学 动力学(音乐) 汽车工程 控制工程 工程类 物理 声学
作者
Hongyan Guo,Wanqing Shi,J.R. Zhang,Jun Liu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2333
摘要

<div class="section abstract"><div class="htmlview paragraph">Human driving behavior's inherent variability, randomness, individual differences, and dynamic vehicle-road situations give human-machine cooperative (HMC) driving considerable uncertainty, which affects the applicability and effectiveness of HMC control in complex scenes. To overcome this challenge, we present a novel data-enabled game output regulation approach for HMC driving. Firstly, a global human-vehicle-road (HVR) model is established considering the varied driver's steering characteristic parameters, such as delay time, preview time, and steering gain, as well as the uncertainty of tire cornering stiffness and variable road curvature disturbance. The robust output regulation theory has been employed to ensure the global DVR system's closed-loop stability, asymptotic tracking, and disturbance rejection, even with an unknown driver's internal state. Secondly, an interactive shared steering controller has been designed to provide personalized driving assistance. Two control subsystems, active front-wheel steering (AFS) and active rear-wheel steering (ARS) systems, are emulated as a dynamic non-zero-sum game to explore a more flexible balance between the dual objectives of path-tracking accuracy and vehicle stability. Finally, the control policy iterative equalities of the AFS and ARS systems are constructed utilizing the coupled game Riccati equation and Kronecker product. Adaptive dynamic programming (ADP) has been employed to iteratively update and learn the optimal shared strategy without relying on accurate knowledge of driver steering characteristics and vehicle dynamics. Simulations demonstrate the convergence and adaptability of the proposed strategy in different road scenarios. In addition, our shared control scheme can effectively assist drivers with different characteristics to achieve ideal steering control performance and reduce their driving workload.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
yy发布了新的文献求助10
2秒前
懒得动完成签到,获得积分10
2秒前
3秒前
欣喜翠丝完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
科研通AI6应助wxy采纳,获得150
4秒前
ltt完成签到,获得积分10
5秒前
Akim应助陶醉山灵采纳,获得10
5秒前
5秒前
CipherSage应助pgojpogk采纳,获得30
6秒前
6秒前
达乐发布了新的文献求助10
6秒前
欣喜翠丝发布了新的文献求助10
7秒前
追寻荔枝发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
丘比特应助LLL采纳,获得10
9秒前
摆烂fish发布了新的文献求助10
9秒前
科研通AI6应助快乐保温杯采纳,获得10
10秒前
Abner发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
ywj完成签到,获得积分10
11秒前
李李李发布了新的文献求助10
11秒前
小刘效果顺利毕业完成签到,获得积分20
11秒前
情怀应助小白采纳,获得10
11秒前
Ava应助梁云采纳,获得10
12秒前
12秒前
12秒前
科研发布了新的文献求助10
12秒前
酷波er应助追寻荔枝采纳,获得10
13秒前
13秒前
俏皮的天思完成签到,获得积分10
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442722
求助须知:如何正确求助?哪些是违规求助? 4552855
关于积分的说明 14239277
捐赠科研通 4474129
什么是DOI,文献DOI怎么找? 2451921
邀请新用户注册赠送积分活动 1442839
关于科研通互助平台的介绍 1418593