Data-Enabled Human-Machine Cooperative Driving Decoupled from Various Driver Steering Characteristics and Vehicle Dynamics

车辆动力学 计算机科学 动力学(音乐) 汽车工程 控制工程 工程类 物理 声学
作者
Hongyan Guo,Wanqing Shi,J.R. Zhang,Jun Liu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2333
摘要

<div class="section abstract"><div class="htmlview paragraph">Human driving behavior's inherent variability, randomness, individual differences, and dynamic vehicle-road situations give human-machine cooperative (HMC) driving considerable uncertainty, which affects the applicability and effectiveness of HMC control in complex scenes. To overcome this challenge, we present a novel data-enabled game output regulation approach for HMC driving. Firstly, a global human-vehicle-road (HVR) model is established considering the varied driver's steering characteristic parameters, such as delay time, preview time, and steering gain, as well as the uncertainty of tire cornering stiffness and variable road curvature disturbance. The robust output regulation theory has been employed to ensure the global DVR system's closed-loop stability, asymptotic tracking, and disturbance rejection, even with an unknown driver's internal state. Secondly, an interactive shared steering controller has been designed to provide personalized driving assistance. Two control subsystems, active front-wheel steering (AFS) and active rear-wheel steering (ARS) systems, are emulated as a dynamic non-zero-sum game to explore a more flexible balance between the dual objectives of path-tracking accuracy and vehicle stability. Finally, the control policy iterative equalities of the AFS and ARS systems are constructed utilizing the coupled game Riccati equation and Kronecker product. Adaptive dynamic programming (ADP) has been employed to iteratively update and learn the optimal shared strategy without relying on accurate knowledge of driver steering characteristics and vehicle dynamics. Simulations demonstrate the convergence and adaptability of the proposed strategy in different road scenarios. In addition, our shared control scheme can effectively assist drivers with different characteristics to achieve ideal steering control performance and reduce their driving workload.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助why采纳,获得10
3秒前
wxiao完成签到,获得积分10
4秒前
菜菜完成签到 ,获得积分10
4秒前
FashionBoy应助dablack采纳,获得30
4秒前
7秒前
zhanlang完成签到 ,获得积分10
13秒前
昔昔完成签到 ,获得积分10
14秒前
帅气白梦完成签到 ,获得积分10
18秒前
li完成签到 ,获得积分10
19秒前
繁荣的映雁完成签到,获得积分10
22秒前
Tici完成签到,获得积分10
22秒前
相爱就永远在一起完成签到,获得积分10
26秒前
2024kyt完成签到 ,获得积分10
26秒前
hy1234完成签到 ,获得积分10
26秒前
迷途的羔羊完成签到 ,获得积分10
30秒前
开心成威完成签到 ,获得积分10
31秒前
bingo完成签到,获得积分10
36秒前
科研通AI2S应助失眠山雁采纳,获得30
38秒前
小姜发布了新的文献求助10
41秒前
卡卡罗特先森完成签到 ,获得积分10
42秒前
45秒前
丸子完成签到 ,获得积分10
46秒前
翘啊完成签到,获得积分10
46秒前
辛勤的寒梦完成签到 ,获得积分10
48秒前
小姜完成签到,获得积分10
50秒前
Docter发布了新的文献求助10
51秒前
chang完成签到 ,获得积分10
52秒前
LiShin完成签到 ,获得积分10
53秒前
欣欣完成签到 ,获得积分10
54秒前
仁爱的谷南完成签到,获得积分10
57秒前
酸奶泡泡完成签到 ,获得积分10
57秒前
58秒前
58秒前
酷波er应助Docter采纳,获得10
58秒前
ju龙哥完成签到,获得积分10
59秒前
ju龙哥发布了新的文献求助10
1分钟前
温馨完成签到 ,获得积分10
1分钟前
1分钟前
wu完成签到,获得积分10
1分钟前
wu发布了新的文献求助10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339148
求助须知:如何正确求助?哪些是违规求助? 2967059
关于积分的说明 8628100
捐赠科研通 2646545
什么是DOI,文献DOI怎么找? 1449297
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660176