Variance-Reduced Deep Actor-Critic with an Optimally Sub-Sampled Actor Recursion

递归(计算机科学) 差异(会计) 计算机科学 数学 算法 人工智能 数学优化 经济 会计
作者
Lakshmi Mandal,Raghuram Bharadwaj Diddigi,Shalabh Bhatnagar
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (7): 3607-3623 被引量:1
标识
DOI:10.1109/tai.2024.3379109
摘要

Reinforcement Learning (RL) algorithms combined with deep learning architectures have achieved tremendous success in many practical applications. However, the policies obtained by many Deep Reinforcement Learning (DRL) algorithms are seen to suffer from high variance making them less useful in safety-critical applications. In general, it is desirable to have algorithms that give a low iterate-variance while providing a high long-term reward. In this work, we consider the Actor-Critic paradigm, where the critic is responsible for evaluating the policy while the feedback from the critic is used by the actor for updating the policy. The updates of both the critic and the actor in the standard Actor-Critic procedure are run concurrently until convergence. It has been previously observed that updating the actor once after every L > 1 steps of the critic reduces the iterate variance. In this paper, we address the question of what optimal L -value to use in the recursions and propose a data-driven L -update rule that runs concurrently with the actor-critic algorithm with the objective being to minimize the variance of the infinite horizon discounted reward. This update is based on a random search (discrete) parameter optimization procedure that incorporates smoothed functional (SF) estimates. We prove the convergence of our proposed multi-timescale scheme to the optimal L and optimal policy pair. Subsequently, through numerical evaluations on benchmark RL tasks, we demonstrate the advantages of our proposed algorithm over multiple state-of-the-art algorithms in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴实以松发布了新的文献求助10
刚刚
聪慧咖啡豆完成签到,获得积分10
1秒前
纯真小伙发布了新的文献求助10
3秒前
3秒前
4秒前
ncycg完成签到,获得积分10
4秒前
威武鞅完成签到,获得积分10
5秒前
orixero应助研友_ZlPVzZ采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
zero发布了新的文献求助20
7秒前
9秒前
酷波er应助kyo采纳,获得10
9秒前
9秒前
10秒前
研友_VZG7GZ应助Edward采纳,获得10
10秒前
xiaochaoge完成签到,获得积分20
11秒前
小皮皮她爹完成签到,获得积分20
12秒前
杜杜完成签到,获得积分10
12秒前
纯真小伙发布了新的文献求助10
12秒前
淳于惜雪完成签到 ,获得积分10
12秒前
May发布了新的文献求助10
13秒前
13秒前
杨明智完成签到 ,获得积分10
14秒前
Doctor发布了新的文献求助10
15秒前
16秒前
17秒前
朴实以松完成签到,获得积分10
17秒前
DJL发布了新的文献求助10
19秒前
Jeamren完成签到,获得积分10
19秒前
20秒前
研友_ZlPVzZ发布了新的文献求助10
20秒前
情怀应助小城故事和冰雨采纳,获得10
22秒前
鱿鱼炒黄瓜完成签到,获得积分20
22秒前
卡卡光波完成签到,获得积分10
25秒前
纯真小伙发布了新的文献求助10
25秒前
ralph_liu完成签到,获得积分10
26秒前
wddytc发布了新的文献求助30
26秒前
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5024110
求助须知:如何正确求助?哪些是违规求助? 4261278
关于积分的说明 13281028
捐赠科研通 4068104
什么是DOI,文献DOI怎么找? 2225210
邀请新用户注册赠送积分活动 1233946
关于科研通互助平台的介绍 1157899