Rare earth modified carbon-based catalysts for oxygen electrode reactions: A machine learning assisted density functional theory investigation

密度泛函理论 电负性 催化作用 电催化剂 双功能 析氧 电极 化学工程 材料科学 纳米技术 化学 电化学 物理化学 计算化学 有机化学 工程类
作者
Qiming Fu,Tao Xu,Daomiao Wang,Chao Liu
出处
期刊:Carbon [Elsevier]
卷期号:223: 119045-119045 被引量:39
标识
DOI:10.1016/j.carbon.2024.119045
摘要

The oxygen electrode reactions (oxygen reduction reaction, ORR and oxygen evolution reaction, OER) are two key reactions in applications such as metal-air batteries, however, slow kinetics have a significant impact on the overall reaction efficiency of the batteries, thus emphasizing the profound significance of catalyst development. In this study, we systematically investigated the catalytic activity of rare-earth-doped graphene (RENxC4-x) as electrocatalysts using a combination of density functional theory (DFT) and machine learning (ML). Furthermore, we successfully screened and identified one ORR catalyst, four OER catalysts, and one bifunctional electrocatalyst from candidate materials. The origins of activity were elucidated in two dimensions using the SHAP (SHapley Additive exPlanation) analysis framework and DFT calculations, revealing that atomic (covalent) radius and ΔG*OH are an important characteristics for describing ORR electrocatalysts, while Pauling electronegativity is crucial for describing OER. Finally, the explicit relationship expression between properties and activity was obtained using the SISSO method, and its generalizability was verified. The interdisciplinary approach of DFT-ML provides insights into the complex origins of activity, offering a new pathway for the discovery and design of high-performance single-atom catalysts (SACs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老龙发布了新的文献求助10
1秒前
传奇3应助刘钊扬采纳,获得10
2秒前
小萌新完成签到,获得积分10
2秒前
咯咚发布了新的文献求助10
2秒前
2秒前
科研通AI6应助xuan采纳,获得80
3秒前
nwds发布了新的文献求助10
3秒前
3秒前
xiaoxiao关注了科研通微信公众号
3秒前
3秒前
bzlish发布了新的文献求助10
4秒前
汉堡包应助zzx采纳,获得10
4秒前
求助文献完成签到,获得积分20
5秒前
mark完成签到,获得积分10
5秒前
酷波er应助甜甜醉波采纳,获得10
6秒前
烟花应助陈志强采纳,获得10
6秒前
6秒前
洪晖阳完成签到,获得积分10
7秒前
莫筱铭发布了新的文献求助10
7秒前
momeak发布了新的文献求助10
8秒前
Akim应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
123应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
汤飞飞完成签到,获得积分10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
asdfzxcv应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
123应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
欢呼乘风应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
123应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858