Rare earth modified carbon-based catalysts for oxygen electrode reactions: A machine learning assisted density functional theory investigation

密度泛函理论 电负性 催化作用 电催化剂 双功能 析氧 电极 化学工程 材料科学 纳米技术 化学 电化学 物理化学 计算化学 有机化学 工程类
作者
Qiming Fu,Tao Xu,Daomiao Wang,Chao Liu
出处
期刊:Carbon [Elsevier]
卷期号:223: 119045-119045 被引量:39
标识
DOI:10.1016/j.carbon.2024.119045
摘要

The oxygen electrode reactions (oxygen reduction reaction, ORR and oxygen evolution reaction, OER) are two key reactions in applications such as metal-air batteries, however, slow kinetics have a significant impact on the overall reaction efficiency of the batteries, thus emphasizing the profound significance of catalyst development. In this study, we systematically investigated the catalytic activity of rare-earth-doped graphene (RENxC4-x) as electrocatalysts using a combination of density functional theory (DFT) and machine learning (ML). Furthermore, we successfully screened and identified one ORR catalyst, four OER catalysts, and one bifunctional electrocatalyst from candidate materials. The origins of activity were elucidated in two dimensions using the SHAP (SHapley Additive exPlanation) analysis framework and DFT calculations, revealing that atomic (covalent) radius and ΔG*OH are an important characteristics for describing ORR electrocatalysts, while Pauling electronegativity is crucial for describing OER. Finally, the explicit relationship expression between properties and activity was obtained using the SISSO method, and its generalizability was verified. The interdisciplinary approach of DFT-ML provides insights into the complex origins of activity, offering a new pathway for the discovery and design of high-performance single-atom catalysts (SACs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸山柳发布了新的文献求助10
1秒前
Akim应助心想事成采纳,获得10
3秒前
wanci应助日出采纳,获得10
3秒前
qinxiang完成签到,获得积分10
4秒前
调皮醉波完成签到 ,获得积分10
6秒前
Jasper应助小马采纳,获得10
6秒前
8秒前
8秒前
aa完成签到,获得积分10
9秒前
日出完成签到,获得积分10
9秒前
淡然白安发布了新的文献求助10
9秒前
英姑应助阿九采纳,获得10
9秒前
10秒前
bkagyin应助狂野的凝芙采纳,获得10
11秒前
彬彬发布了新的文献求助10
12秒前
12秒前
karstbing发布了新的文献求助30
13秒前
14秒前
栗子发布了新的文献求助10
15秒前
16秒前
zz发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
20秒前
21秒前
22秒前
22秒前
无情的踏歌应助核桃采纳,获得30
22秒前
23秒前
小马发布了新的文献求助10
23秒前
24秒前
24秒前
25秒前
CipherSage应助马dong采纳,获得10
25秒前
2428完成签到,获得积分10
26秒前
LiuHD发布了新的文献求助10
28秒前
Ding发布了新的文献求助10
29秒前
任性的睫毛完成签到,获得积分20
30秒前
哈哈哈发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563431
求助须知:如何正确求助?哪些是违规求助? 4648294
关于积分的说明 14684348
捐赠科研通 4590281
什么是DOI,文献DOI怎么找? 2518423
邀请新用户注册赠送积分活动 1491102
关于科研通互助平台的介绍 1462386