An adaptive consensus model for multi-criteria sorting under linguistic distribution group decision making considering decision-makers’ attitudes

群体决策 分类 计算机科学 决策模型 群(周期表) 分布(数学) 语言学 人工智能 自然语言处理 管理科学 心理学 社会心理学 数学 算法 数学分析 哲学 经济 有机化学 化学
作者
Zhang‐peng Tian,Feifei Xu,Ru‐xin Nie,Xiaokang Wang,Jianqiang Wang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102406-102406
标识
DOI:10.1016/j.inffus.2024.102406
摘要

Group multiple criteria sorting (MCS) has become a trend in dealing with a variety of practical problems. During the process of managing group MCS, it is critical to reduce conflicts among decision-makers (DMs). Given the key role of DMs' attitudes in affecting consensus level, this study aims to propose a novel consensus-based approach to solve group MCS problems considering DMs' attitudes with flexible expression linguistic distribution assessments (LDAs) that can capture massive DMs' qualitative preferences. To achieve this goal, first, a minimum adjustment-based optimization model is built to guide individuals in revising their preferences, and a maximum assignment interval-based optimization model is constructed to derive consistent and possible assignments of each alternative while maintaining the accuracy levels of the original assignments. An attitudinal consensus index is then defined to measure the group consensus level, by which group DMs' attitudes can be well considered in MCS problems. A sophisticated adaptive feedback adjustment mechanism is also developed and inserted into the consensus model, which provides support for consensus-reaching based on the advantages of both types of adaptive feedback adjustment mechanism strategies. Afterwards, to generate more straightforward and scientific assignment solutions, this study proposes a minimum information loss-based optimization model to identify the final categories of each alternative. Finally, an illustrative example for evaluating livable cities, followed by sensitivity and comparative analyses, is presented to demonstrate the applicability and advantages of the proposed MCS approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
yyyyxxxg完成签到,获得积分10
2秒前
科研通AI2S应助学术laji采纳,获得10
4秒前
韶华若锦完成签到 ,获得积分10
4秒前
雷乾完成签到,获得积分10
5秒前
落落完成签到 ,获得积分0
6秒前
Gu发布了新的文献求助10
7秒前
吸尘器完成签到 ,获得积分10
7秒前
慕言完成签到 ,获得积分10
10秒前
耍酷的冷雪完成签到,获得积分10
10秒前
做不了一点科研完成签到 ,获得积分10
11秒前
wgl200212完成签到,获得积分10
12秒前
温暖霸完成签到,获得积分10
12秒前
四糸乃完成签到,获得积分10
12秒前
St雪完成签到,获得积分10
12秒前
菜头完成签到,获得积分10
15秒前
万里完成签到,获得积分10
16秒前
15940203654完成签到 ,获得积分10
16秒前
orange应助医无止境采纳,获得10
17秒前
xixi很困完成签到 ,获得积分10
17秒前
犹豫的若男完成签到,获得积分10
19秒前
鸡蛋完成签到 ,获得积分10
19秒前
hsiuf完成签到,获得积分10
21秒前
Gu完成签到,获得积分10
21秒前
闻巷雨完成签到 ,获得积分10
22秒前
一八四完成签到,获得积分10
24秒前
大琪哥哥要顺利毕业完成签到 ,获得积分10
24秒前
顾矜应助DR.zhang采纳,获得10
25秒前
疯子不风完成签到,获得积分10
25秒前
mm完成签到 ,获得积分10
26秒前
KingHok完成签到,获得积分10
27秒前
ccx完成签到,获得积分10
28秒前
执着新蕾完成签到,获得积分10
28秒前
pppra完成签到,获得积分10
29秒前
lihaichuan完成签到,获得积分10
29秒前
笑点低的凉面完成签到,获得积分10
30秒前
活力数据线完成签到,获得积分10
31秒前
32秒前
poly完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188343
求助须知:如何正确求助?哪些是违规求助? 4372620
关于积分的说明 13613734
捐赠科研通 4225939
什么是DOI,文献DOI怎么找? 2318042
邀请新用户注册赠送积分活动 1316607
关于科研通互助平台的介绍 1266283