Reconcile the contradictory wettability requirements for the reduction and oxidation half-reactions in overall CO2 photoreduction via alternately hydrophobic surfaces

润湿 氧化还原 还原(数学) 化学工程 化学 光化学 材料科学 组合化学 有机化学 工程类 几何学 数学
作者
Hailing Huo,Ting Hu,Chengxi Huang,Friedrich Wu,Tongyu Wang,Xuan Li,Liang Zhang,Jun Qiang,Zhiqing Zhong,Hongbin Xing,Erjun Kan,Ang Li
出处
期刊:Journal of Energy Chemistry [Elsevier]
标识
DOI:10.1016/j.jechem.2024.02.010
摘要

The overall photocatalytic CO2 reduction reaction (OPCRR) that can directly convert CO2 and H2O into fuels represents a promising renewable energy conversion technology. As a typical redox reaction, the OPCRR involves two half-reactions: the CO2 reduction half-reaction (CRHR) and the water oxidation half-reaction (WOHR). Generally, both half-reactions can be promoted by adjusting the wettability of catalysts. However, there is a contradiction in wettability requirements for the two half-reactions. Specifically, CRHR prefers a hydrophobic surface that can accumulate more CO2 molecules on the active sites, ensuring the appropriate ratio of gas-phase (CO2) to liquid-phase (H2O) reactants. Conversely, the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product (O2) from the catalyst surface, preventing isolation between active sites and the reactant (H2O). Here, we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst. This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy. Consequently, the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%. Notably, in ethanol production, the catalyst exhibited a 10.64-fold increase in generation rate (271.44 μmol g−1 h−1) and a 4-fold increase in selectivity (55.77%) compared to the benchmark catalyst. This innovative approach holds great potential for application in universal overall reactions involving gas participation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
请叫我风吹麦浪应助PengHu采纳,获得30
2秒前
jjjjjj完成签到,获得积分10
2秒前
凝子老师发布了新的文献求助10
4秒前
4秒前
橙子fy16_发布了新的文献求助10
6秒前
cookie完成签到,获得积分10
6秒前
柒柒的小熊完成签到,获得积分10
7秒前
7秒前
Hello应助萌之痴痴采纳,获得10
8秒前
hahaer完成签到,获得积分10
10秒前
领导范儿应助失眠虔纹采纳,获得10
11秒前
12秒前
Owen应助凝子老师采纳,获得10
15秒前
15秒前
南宫炽滔完成签到 ,获得积分10
17秒前
17秒前
丘比特应助飞羽采纳,获得10
18秒前
沙拉发布了新的文献求助10
18秒前
19秒前
20秒前
椰子糖完成签到 ,获得积分10
21秒前
21秒前
ZHU完成签到,获得积分10
22秒前
阳阳发布了新的文献求助10
23秒前
Raymond应助雪山飞龙采纳,获得10
23秒前
kk发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
25秒前
26秒前
29秒前
果果瑞宁发布了新的文献求助10
29秒前
wewewew发布了新的文献求助10
29秒前
29秒前
打打应助沙拉采纳,获得10
29秒前
30秒前
诸笑白发布了新的文献求助10
31秒前
丹丹完成签到 ,获得积分10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849