Supporting Teachers’ Professional Development With Generative AI: The Effects on Higher Order Thinking and Self-Efficacy

计算机科学 生成语法 订单(交换) 专业发展 数学教育 人机交互 多媒体 人工智能 心理学 教育学 财务 经济
作者
Jijian Lu,Ruxin Zheng,Zikun Gong,Xu Huifen
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 1279-1289 被引量:12
标识
DOI:10.1109/tlt.2024.3369690
摘要

Generative AI has emerged as a noteworthy milestone and a consequential advancement in the annals of major disciplines within the domains of human science and technology. This study aims to explore the effects of generative AI-assisted pre-service teaching skills training on pre-service teachers' self-efficacy and higher order thinking. The participants of this study were 215 pre-service mathematics, science, and computer teachers from a university in China. Firstly, a pretest-posttest quasi-experimental design was implemented for an experimental group (teaching skills training by generative AI) and a control group (teaching skills training by traditional methods) by investigating the teacher self-efficacy and higher order thinking of the two groups before and after the experiment. Secondly, a semi-structured interview comprising open-ended questions was administered to 25 pre-service teachers within the experimental group to present their views on generative AI-assisted teaching. The results showed that the scores of pre-service teachers in the experimental group, who used generative AI for teachers' professional development, were considerably higher than those of the control group, both in teacher self-efficacy (F = 8.589, p = 0.0084< 0.05) and higher order thinking (F = 7.217, p = 0.008 < 0.05). It revealed that generative AI can be effective in supporting teachers' professional development. This study produced a practical teachers' professional development method for pre-service teachers with generative AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小W爱吃梨完成签到,获得积分10
1秒前
1秒前
栀清发布了新的文献求助10
1秒前
zss完成签到 ,获得积分10
2秒前
2秒前
张无忌发布了新的文献求助30
3秒前
4秒前
wocao完成签到 ,获得积分10
7秒前
卡卡发布了新的文献求助10
7秒前
8秒前
aa完成签到,获得积分10
8秒前
昵称什么的不重要啦完成签到 ,获得积分10
8秒前
甜筒完成签到 ,获得积分10
8秒前
兴奋的问旋应助Li猪猪采纳,获得10
9秒前
钰c完成签到,获得积分10
10秒前
心灵美的白易完成签到,获得积分10
10秒前
勤劳冰烟完成签到,获得积分10
12秒前
雨雾完成签到,获得积分10
12秒前
斯文败类应助凶狠的乐巧采纳,获得10
12秒前
12秒前
生言生语完成签到,获得积分10
12秒前
alick发布了新的文献求助10
13秒前
钰c发布了新的文献求助10
13秒前
Maggie完成签到 ,获得积分10
13秒前
四月是一只爱猫的羊完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
打打应助嘟嘟请让一让采纳,获得10
15秒前
专一完成签到,获得积分10
15秒前
Lucas应助九川采纳,获得10
15秒前
yl关闭了yl文献求助
15秒前
16秒前
研友_VZG7GZ应助韩莎莎采纳,获得10
16秒前
16秒前
丘比特应助卡卡采纳,获得10
17秒前
17秒前
毛毛发布了新的文献求助10
17秒前
ljx完成签到 ,获得积分10
17秒前
活力山蝶应助小白采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794