Graph-Based Generative Adversarial Networks for Molecular Generation with Noise Diffusion

对抗制 生成语法 计算机科学 图形 理论计算机科学 生成对抗网络 图论 人工智能 数学 深度学习 组合数学
作者
J.F. Wang,Bin Ju,Xiaoliang Qian,Minchao Ye,Wanli Huo
标识
DOI:10.1145/3640900.3640911
摘要

One of the crucial objectives in modern drug design is the generation of high-quality novel molecules. Currently, numerous deep learning methods have been applied in the field of molecular generation. Modeling molecules as graph-structured data provides a unique representation that offers richer structural information than sequential data. However, unlike data such as images, conventional embedding methods struggle to capture the topological structure of graphs and distinguish between different types of nodes and edges, leading to a loss of molecular structural information. Additionally, traditional Generative Adversarial Networks(GANs) often concentrate on fitting training data, leading to a concentrated distribution that limits the diversity of generated molecules. In this paper, we propose a Diffusion-GAN framework based on molecular graphs to address these challenges. The graph autoencoder effectively embeds molecular graph data, preserving structural information. The Diffusion-GAN module progressively introduces noise through a forward diffusion chain to broaden the sampling distribution, thereby enhancing the diversity of generated samples. We conducted molecular graph generation tasks on the QM9, ZINC and MOSES datasets to demonstrate the effectiveness of this method. Our method exhibits higher validity and diversity than several classical molecular generation algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZIS完成签到,获得积分10
3秒前
务实饼干应助科研通管家采纳,获得30
3秒前
思源应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
0128lun应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
7秒前
研友_Zlepz8完成签到,获得积分0
7秒前
9秒前
Singularity举报闹闹求助涉嫌违规
9秒前
缓慢的饼干完成签到,获得积分10
15秒前
称心不尤发布了新的文献求助10
16秒前
20秒前
佳远完成签到,获得积分10
22秒前
23秒前
不配.应助闪闪的白易采纳,获得10
23秒前
研友_VZG7GZ应助stay采纳,获得10
23秒前
母广明发布了新的文献求助10
24秒前
123456完成签到,获得积分20
25秒前
孟冬发布了新的文献求助10
25秒前
Shaewei完成签到,获得积分10
26秒前
27秒前
xixi完成签到 ,获得积分10
27秒前
JJ完成签到,获得积分10
29秒前
Singularity应助Niuma采纳,获得10
32秒前
岚岚发布了新的文献求助10
36秒前
37秒前
传奇3应助热心市民小红花采纳,获得10
40秒前
42秒前
李白南南完成签到 ,获得积分10
43秒前
周瓦特发布了新的文献求助10
43秒前
佳远发布了新的文献求助10
46秒前
lll发布了新的文献求助10
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138572
求助须知:如何正确求助?哪些是违规求助? 2789520
关于积分的说明 7791526
捐赠科研通 2445903
什么是DOI,文献DOI怎么找? 1300715
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079