Deep Learning-Based Classification of Melanoma and Non-Melanoma Skin Cancer

黑色素瘤 皮肤癌 医学 皮肤病科 人工智能 癌症 癌症研究 计算机科学 内科学
作者
Eatedal Alabdulkreem,Hela Elmannai,Aymen Saad,Israa S. Kamil,Ahmed Elaraby
出处
期刊:Traitement Du Signal [International Information and Engineering Technology Association]
卷期号:41 (1): 213-223 被引量:1
标识
DOI:10.18280/ts.410117
摘要

Melanoma skin cancer is primarily characterized by poor prognostic responses.Surgical treatment can achieve advanced cure rate with early melanoma detection.Manual segmentation of suspected lesions aids early melanoma diagnosis.However, the limitations of manual segmentation include low efficiency and a risk of misclassification.Deep learning, due to its proficiency in image object classification, has gained popularity and is usually used in medical specialties such as ophthalmology, dermatology, and radiology.This paper proposes a deep learning method using a novel light weight convolutional neural networks (LWCNN) and transfer learning techniques (GoogleNet,.These are used to train datasets and features enhancement of skin scan gathered from Kaggle, aiming to distinguish them into two groups: Melanoma and Non-Melanoma cells.By employing these techniques, new datasets with robust features are produced.All CNN models have been tested in two experiments.In firestone, model was tested solely with original datasets and achieved 97.30%, 88.43%, and 48.28% for AC-Training, AC-Testing, and Time (min) respectively.In second experiment, we used the dataset after enhancing the features of skin scan images, which resulted in 99.18%, 91.05%, and 22.54% for AC-Training, AC-Testing, and Time (min) respectively.According to experimental results, the proposed approach provides higher accuracy results for enhanced images than original images, demonstrating its potential in skin cancer classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
w_应助街道办事部采纳,获得10
刚刚
1秒前
雍飞烟完成签到,获得积分10
1秒前
正直天空完成签到,获得积分20
1秒前
拼搏马里奥完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
xzzt完成签到 ,获得积分10
3秒前
Jony发布了新的文献求助10
3秒前
怕孤独的思山完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
SUN发布了新的文献求助20
4秒前
CC完成签到,获得积分10
4秒前
4秒前
5秒前
研友_VZG7GZ应助啾咪采纳,获得10
5秒前
正直天空发布了新的文献求助30
5秒前
平淡妙梦完成签到,获得积分10
7秒前
黄林旋发布了新的文献求助10
8秒前
FashionBoy应助耍酷的哈密瓜采纳,获得10
8秒前
9秒前
9秒前
sniffgo发布了新的文献求助10
9秒前
Leviathan给剥橘子高手的求助进行了留言
9秒前
9秒前
10秒前
想自由发布了新的文献求助10
11秒前
11秒前
11秒前
平淡妙梦发布了新的文献求助10
12秒前
小卷粉发布了新的文献求助10
12秒前
zzz完成签到,获得积分10
12秒前
QY11发布了新的文献求助10
13秒前
13秒前
一切尽意,百事从欢完成签到,获得积分0
13秒前
13秒前
细心的茗完成签到,获得积分10
14秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3074861
求助须知:如何正确求助?哪些是违规求助? 2728212
关于积分的说明 7502977
捐赠科研通 2376311
什么是DOI,文献DOI怎么找? 1259944
科研通“疑难数据库(出版商)”最低求助积分说明 610771
版权声明 597101