Enhancing Damage Localization in GFRP Composite Plates: A Novel Approach Using Feedback Optimization and Multi-Label Classification

纤维增强塑料 情态动词 计算机科学 灵敏度(控制系统) 假阳性悖论 有限元法 复合数 损害赔偿 基质(化学分析) 结构工程 模式识别(心理学) 机器学习 人工智能 材料科学 工程类 算法 复合材料 电子工程 法学 政治学
作者
Jiayu Cao,Jianbin Liao,Yan Jin,Hongliang Yu
出处
期刊:Processes [MDPI AG]
卷期号:12 (2): 414-414
标识
DOI:10.3390/pr12020414
摘要

Damage localization in GFRP (glass-fiber-reinforced polymer) composite plates is a crucial research area in marine engineering. This study introduces a feedback-based damage index (DI) combined with multi-label classification to enhance the accuracy of damage localization and address scenarios involving multiple damages. The research begins with the creation of a modal database for yachts’ GFRP composite plates using finite element modeling (FEM). A method for deriving a feedback-weighted matrix, based on the accuracy of the DI, is then developed. Sensitivity analysis reveals that the feedback DI is 50% more sensitive than the traditional DI, reducing false positives and missed detections. The associated feedback-weighted matrix depends solely on the structural shape, ensuring its transferability. To address the challenge for localizing multiple damages, a multi-label classification approach is proposed. The synergy between the feedback optimization and multi-label classification enables the rapid and precise localization of multiple damages in GFRP composite plates. Modal testing on damaged GFRP plates confirms the enhanced accuracy for combining the feedback DI with multi-label classification for pinpointing damage locations. Compared with traditional methods, this feedback DI method improves sensitivity, while multi-label classification effectively handles multiple damage scenarios, enhancing the overall efficiency of the damage diagnosis. The effectiveness of the proposed methods is validated through experimentation, offering robust theoretical support for composite plate damage diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹斟酒完成签到,获得积分10
1秒前
1秒前
1秒前
请叫我风吹麦浪应助Wxd0211采纳,获得10
1秒前
1秒前
1秒前
深情安青应助美女采纳,获得10
2秒前
111完成签到,获得积分10
2秒前
葛辉辉完成签到,获得积分10
3秒前
kangkang发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
SciGPT应助ye采纳,获得10
5秒前
乐乐应助自信晟睿采纳,获得10
5秒前
葛辉辉发布了新的文献求助10
5秒前
6秒前
Wxd0211完成签到,获得积分20
6秒前
nemo完成签到,获得积分10
7秒前
小橙子发布了新的文献求助10
7秒前
lxh2424发布了新的文献求助30
7秒前
万能图书馆应助YHL采纳,获得10
7秒前
请叫我风吹麦浪应助hu970采纳,获得10
7秒前
传统的慕儿完成签到,获得积分10
8秒前
aurora完成签到 ,获得积分10
8秒前
8秒前
领导范儿应助gyt采纳,获得10
10秒前
麦麦发布了新的文献求助10
10秒前
晴天完成签到,获得积分10
10秒前
龙歪歪完成签到 ,获得积分20
11秒前
Crush完成签到,获得积分0
11秒前
苏照杭应助kydd采纳,获得10
12秒前
英姑应助研友_8yN60L采纳,获得10
12秒前
学术蠕虫完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
14秒前
中心湖小海棠完成签到,获得积分10
14秒前
Orange应助new_vision采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762