CORE: CORrelation-Guided Feature Enhancement for Few-Shot Image Classification

计算机科学 人工智能 模式识别(心理学) 判别式 分类器(UML) 离群值 特征(语言学) 特征选择 机器学习 特征提取 数据挖掘 语言学 哲学
作者
Jing Xu,Xinglin Pan,Jingquan Wang,Wenjie Pei,Qing Liao,Zenglin Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3098-3110 被引量:7
标识
DOI:10.1109/tnnls.2024.3355774
摘要

Few-shot classification aims to adapt classifiers trained on base classes to novel classes with a few shots. However, the limited amount of training data is often inadequate to represent the intraclass variations in novel classes. This can result in biased estimation of the feature distribution, which in turn results in inaccurate decision boundaries, especially when the support data are outliers. To address this issue, we propose a feature enhancement method called CORrelation-guided feature Enrichment that generates improved features for novel classes using weak supervision from the base classes. The proposed CORrelation-guided feature Enhancement (CORE) method utilizes an autoencoder (AE) architecture but incorporates classification information into its latent space. This design allows the CORE to generate more discriminative features while discarding irrelevant content information. After being trained on base classes, CORE's generative ability can be transferred to novel classes that are similar to those in the base classes. By using these generative features, we can reduce the estimation bias of the class distribution, which makes few-shot learning (FSL) less sensitive to the selection of support data. Our method is generic and flexible and can be used with any feature extractor and classifier. It can be easily integrated into existing FSL approaches. Experiments with different backbones and classifiers show that our proposed method consistently outperforms existing methods on various widely used benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文献快来完成签到,获得积分10
刚刚
刚刚
1秒前
科研通AI2S应助虤铠采纳,获得30
1秒前
Kirsten发布了新的文献求助10
1秒前
led灯泡发布了新的文献求助10
1秒前
星辰发布了新的文献求助10
1秒前
2秒前
五月好难发布了新的文献求助10
2秒前
EpQAQ完成签到,获得积分10
3秒前
3秒前
神勇难胜完成签到 ,获得积分10
3秒前
邱海华发布了新的文献求助10
3秒前
4秒前
mxr完成签到,获得积分10
4秒前
khh完成签到 ,获得积分10
5秒前
Akim应助vvA11采纳,获得10
5秒前
5秒前
5秒前
蓝天发布了新的文献求助10
7秒前
keyaner发布了新的文献求助10
7秒前
是谁还没睡完成签到 ,获得积分10
7秒前
7秒前
8秒前
科研通AI6应助yangyajie采纳,获得10
9秒前
丘比特应助lawrenceip0926采纳,获得10
9秒前
9秒前
KIKI完成签到,获得积分10
9秒前
fuchao发布了新的文献求助10
9秒前
khh关注了科研通微信公众号
9秒前
10秒前
李伟完成签到,获得积分10
10秒前
星辰完成签到,获得积分10
10秒前
sakyadamo发布了新的文献求助10
10秒前
科研通AI6应助上山的吗喽采纳,获得10
11秒前
悦耳的灵完成签到 ,获得积分10
11秒前
cheng发布了新的文献求助10
12秒前
12秒前
Vv完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901