CORE: CORrelation-Guided Feature Enhancement for Few-Shot Image Classification

计算机科学 人工智能 模式识别(心理学) 判别式 分类器(UML) 离群值 特征(语言学) 特征选择 机器学习 特征提取 数据挖掘 哲学 语言学
作者
Jing Xu,Xinglin Pan,Jingquan Wang,Wenjie Pei,Qing Liao,Zenglin Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3098-3110 被引量:7
标识
DOI:10.1109/tnnls.2024.3355774
摘要

Few-shot classification aims to adapt classifiers trained on base classes to novel classes with a few shots. However, the limited amount of training data is often inadequate to represent the intraclass variations in novel classes. This can result in biased estimation of the feature distribution, which in turn results in inaccurate decision boundaries, especially when the support data are outliers. To address this issue, we propose a feature enhancement method called CORrelation-guided feature Enrichment that generates improved features for novel classes using weak supervision from the base classes. The proposed CORrelation-guided feature Enhancement (CORE) method utilizes an autoencoder (AE) architecture but incorporates classification information into its latent space. This design allows the CORE to generate more discriminative features while discarding irrelevant content information. After being trained on base classes, CORE's generative ability can be transferred to novel classes that are similar to those in the base classes. By using these generative features, we can reduce the estimation bias of the class distribution, which makes few-shot learning (FSL) less sensitive to the selection of support data. Our method is generic and flexible and can be used with any feature extractor and classifier. It can be easily integrated into existing FSL approaches. Experiments with different backbones and classifiers show that our proposed method consistently outperforms existing methods on various widely used benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈陈陈完成签到,获得积分10
刚刚
义气若菱发布了新的文献求助10
刚刚
Jake发布了新的文献求助10
1秒前
1秒前
2秒前
tttttttttt发布了新的文献求助30
3秒前
硕shuo完成签到,获得积分10
3秒前
斯文败类应助道阻且长采纳,获得10
4秒前
vm光荣关注了科研通微信公众号
5秒前
5秒前
从容苡完成签到,获得积分10
5秒前
橙子发布了新的文献求助10
5秒前
cc完成签到,获得积分10
6秒前
vk完成签到,获得积分10
6秒前
籽岷发布了新的文献求助10
6秒前
谢颖俊完成签到,获得积分10
7秒前
pearlwh1227完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
丘比特应助jmy1995采纳,获得10
9秒前
10秒前
10秒前
10秒前
烟花应助lang采纳,获得10
11秒前
汉堡包应助万水千山采纳,获得10
11秒前
12秒前
baihehuakai完成签到,获得积分10
12秒前
SciGPT应助风趣的凡采纳,获得10
13秒前
陆人甲发布了新的文献求助10
13秒前
义气若菱发布了新的文献求助10
13秒前
edtaa完成签到 ,获得积分10
14秒前
义气若菱发布了新的文献求助10
14秒前
14秒前
英姑应助hxm采纳,获得10
14秒前
cxz发布了新的文献求助10
14秒前
18234042095完成签到 ,获得积分10
15秒前
搜集达人应助Yidie采纳,获得10
16秒前
DONG发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713248
求助须知:如何正确求助?哪些是违规求助? 5214511
关于积分的说明 15270206
捐赠科研通 4865029
什么是DOI,文献DOI怎么找? 2611814
邀请新用户注册赠送积分活动 1562053
关于科研通互助平台的介绍 1519295