CORE: CORrelation-Guided Feature Enhancement for Few-Shot Image Classification

计算机科学 人工智能 模式识别(心理学) 判别式 分类器(UML) 离群值 特征(语言学) 特征选择 机器学习 特征提取 数据挖掘 哲学 语言学
作者
Jing Xu,Xinglin Pan,Jingquan Wang,Wenjie Pei,Qing Liao,Zenglin Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3098-3110 被引量:7
标识
DOI:10.1109/tnnls.2024.3355774
摘要

Few-shot classification aims to adapt classifiers trained on base classes to novel classes with a few shots. However, the limited amount of training data is often inadequate to represent the intraclass variations in novel classes. This can result in biased estimation of the feature distribution, which in turn results in inaccurate decision boundaries, especially when the support data are outliers. To address this issue, we propose a feature enhancement method called CORrelation-guided feature Enrichment that generates improved features for novel classes using weak supervision from the base classes. The proposed CORrelation-guided feature Enhancement (CORE) method utilizes an autoencoder (AE) architecture but incorporates classification information into its latent space. This design allows the CORE to generate more discriminative features while discarding irrelevant content information. After being trained on base classes, CORE's generative ability can be transferred to novel classes that are similar to those in the base classes. By using these generative features, we can reduce the estimation bias of the class distribution, which makes few-shot learning (FSL) less sensitive to the selection of support data. Our method is generic and flexible and can be used with any feature extractor and classifier. It can be easily integrated into existing FSL approaches. Experiments with different backbones and classifiers show that our proposed method consistently outperforms existing methods on various widely used benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
内向孤菱发布了新的文献求助30
1秒前
1秒前
可可布朗尼完成签到,获得积分10
2秒前
思源应助自信笑槐采纳,获得10
3秒前
4秒前
斑比发布了新的文献求助10
5秒前
JUN发布了新的文献求助10
5秒前
6秒前
bkagyin应助澄桦采纳,获得10
6秒前
天真似狮发布了新的文献求助10
8秒前
9秒前
10秒前
科研通AI6应助厚朴采纳,获得10
10秒前
lzp完成签到 ,获得积分10
11秒前
11秒前
已知中的未知完成签到 ,获得积分10
11秒前
11秒前
chenbin1105完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
CipherSage应助大胆的魔镜采纳,获得10
12秒前
13秒前
CipherSage应助sxh采纳,获得10
13秒前
完美世界应助明芬采纳,获得10
13秒前
renxin完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
万能图书馆应助fjnm采纳,获得10
14秒前
高手发布了新的文献求助10
15秒前
小江不饿完成签到,获得积分10
15秒前
顺利的似狮完成签到,获得积分10
16秒前
李健应助renxin采纳,获得10
17秒前
52hzzz关注了科研通微信公众号
17秒前
fanfan发布了新的文献求助10
18秒前
18秒前
20秒前
20秒前
宁羽发布了新的文献求助10
21秒前
大块发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131