CORE: CORrelation-Guided Feature Enhancement for Few-Shot Image Classification

计算机科学 人工智能 模式识别(心理学) 判别式 分类器(UML) 离群值 特征(语言学) 特征选择 机器学习 特征提取 数据挖掘 哲学 语言学
作者
Jing Xu,Xinglin Pan,Jingquan Wang,Wenjie Pei,Qing Liao,Zenglin Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3098-3110 被引量:7
标识
DOI:10.1109/tnnls.2024.3355774
摘要

Few-shot classification aims to adapt classifiers trained on base classes to novel classes with a few shots. However, the limited amount of training data is often inadequate to represent the intraclass variations in novel classes. This can result in biased estimation of the feature distribution, which in turn results in inaccurate decision boundaries, especially when the support data are outliers. To address this issue, we propose a feature enhancement method called CORrelation-guided feature Enrichment that generates improved features for novel classes using weak supervision from the base classes. The proposed CORrelation-guided feature Enhancement (CORE) method utilizes an autoencoder (AE) architecture but incorporates classification information into its latent space. This design allows the CORE to generate more discriminative features while discarding irrelevant content information. After being trained on base classes, CORE's generative ability can be transferred to novel classes that are similar to those in the base classes. By using these generative features, we can reduce the estimation bias of the class distribution, which makes few-shot learning (FSL) less sensitive to the selection of support data. Our method is generic and flexible and can be used with any feature extractor and classifier. It can be easily integrated into existing FSL approaches. Experiments with different backbones and classifiers show that our proposed method consistently outperforms existing methods on various widely used benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助LLL采纳,获得10
刚刚
刚刚
乐观黎云完成签到 ,获得积分10
刚刚
果粒橙子发布了新的文献求助10
刚刚
方方土应助轻松盼雁采纳,获得10
1秒前
CipherSage应助xu采纳,获得10
1秒前
梦想成神发布了新的文献求助10
1秒前
小蘑菇应助雨醉东风采纳,获得10
1秒前
2秒前
2秒前
2秒前
自然怀梦发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
kiddchow发布了新的文献求助20
3秒前
飞ss完成签到,获得积分20
3秒前
六芹完成签到,获得积分20
4秒前
4秒前
猪猪hero应助爱听歌的老九采纳,获得10
5秒前
5秒前
Jasper应助很难过采纳,获得10
5秒前
黎呀发布了新的文献求助10
5秒前
难过剑成完成签到,获得积分10
5秒前
堇妗发布了新的文献求助30
5秒前
FuuKa完成签到,获得积分10
6秒前
乘凉完成签到,获得积分10
6秒前
烟花应助Bowen Chu采纳,获得10
6秒前
Donker发布了新的文献求助10
7秒前
linzhi_发布了新的文献求助10
7秒前
吕yj发布了新的文献求助10
7秒前
科研通AI6应助庄冬丽采纳,获得10
7秒前
慕子默发布了新的文献求助10
7秒前
zhucan应助龙井茶采纳,获得10
7秒前
lbw完成签到 ,获得积分10
8秒前
8秒前
8秒前
梦想成神完成签到,获得积分20
8秒前
小马甲应助qd采纳,获得10
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619979
求助须知:如何正确求助?哪些是违规求助? 4704479
关于积分的说明 14928024
捐赠科研通 4760640
什么是DOI,文献DOI怎么找? 2550712
邀请新用户注册赠送积分活动 1513458
关于科研通互助平台的介绍 1474498