CORE: CORrelation-Guided Feature Enhancement for Few-Shot Image Classification

计算机科学 人工智能 模式识别(心理学) 判别式 分类器(UML) 离群值 特征(语言学) 特征选择 机器学习 特征提取 数据挖掘 语言学 哲学
作者
Jing Xu,Xinglin Pan,Jingquan Wang,Wenjie Pei,Qing Liao,Zenglin Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3098-3110 被引量:1
标识
DOI:10.1109/tnnls.2024.3355774
摘要

Few-shot classification aims to adapt classifiers trained on base classes to novel classes with a few shots. However, the limited amount of training data is often inadequate to represent the intraclass variations in novel classes. This can result in biased estimation of the feature distribution, which in turn results in inaccurate decision boundaries, especially when the support data are outliers. To address this issue, we propose a feature enhancement method called CORrelation-guided feature Enrichment that generates improved features for novel classes using weak supervision from the base classes. The proposed CORrelation-guided feature Enhancement (CORE) method utilizes an autoencoder (AE) architecture but incorporates classification information into its latent space. This design allows the CORE to generate more discriminative features while discarding irrelevant content information. After being trained on base classes, CORE's generative ability can be transferred to novel classes that are similar to those in the base classes. By using these generative features, we can reduce the estimation bias of the class distribution, which makes few-shot learning (FSL) less sensitive to the selection of support data. Our method is generic and flexible and can be used with any feature extractor and classifier. It can be easily integrated into existing FSL approaches. Experiments with different backbones and classifiers show that our proposed method consistently outperforms existing methods on various widely used benchmarks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liwei发布了新的文献求助10
刚刚
123发布了新的文献求助10
刚刚
niko发布了新的文献求助30
刚刚
deng发布了新的文献求助30
刚刚
LIYI发布了新的文献求助10
1秒前
秦艽完成签到,获得积分10
1秒前
李ny完成签到,获得积分20
2秒前
2秒前
Lucas应助8y24dp采纳,获得10
2秒前
111发布了新的文献求助10
3秒前
yqsf789发布了新的文献求助10
3秒前
Sandra完成签到 ,获得积分10
3秒前
可爱的函函应助西蜀小吏采纳,获得10
3秒前
二战老兵完成签到,获得积分10
3秒前
lllly发布了新的文献求助10
5秒前
John不想上班完成签到 ,获得积分10
5秒前
gaohui完成签到,获得积分10
5秒前
bionova发布了新的文献求助10
6秒前
小冰糖完成签到 ,获得积分10
6秒前
6秒前
灬卍冉发布了新的文献求助10
6秒前
FXY发布了新的文献求助10
7秒前
7秒前
7秒前
111完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
bioinfo_sc完成签到,获得积分10
9秒前
9秒前
桐桐应助zxdnbb采纳,获得10
9秒前
liwei完成签到,获得积分10
10秒前
顾矜应助爱格儿采纳,获得10
10秒前
研友_LmVygn发布了新的文献求助10
11秒前
oo完成签到,获得积分10
11秒前
慕青应助LIYI采纳,获得10
12秒前
12秒前
13秒前
追寻听云发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
XIA完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123