CORE: CORrelation-Guided Feature Enhancement for Few-Shot Image Classification

计算机科学 人工智能 模式识别(心理学) 判别式 分类器(UML) 离群值 特征(语言学) 特征选择 机器学习 特征提取 数据挖掘 哲学 语言学
作者
Jing Xu,Xinglin Pan,Jingquan Wang,Wenjie Pei,Qing Liao,Zenglin Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3098-3110 被引量:1
标识
DOI:10.1109/tnnls.2024.3355774
摘要

Few-shot classification aims to adapt classifiers trained on base classes to novel classes with a few shots. However, the limited amount of training data is often inadequate to represent the intraclass variations in novel classes. This can result in biased estimation of the feature distribution, which in turn results in inaccurate decision boundaries, especially when the support data are outliers. To address this issue, we propose a feature enhancement method called CORrelation-guided feature Enrichment that generates improved features for novel classes using weak supervision from the base classes. The proposed CORrelation-guided feature Enhancement (CORE) method utilizes an autoencoder (AE) architecture but incorporates classification information into its latent space. This design allows the CORE to generate more discriminative features while discarding irrelevant content information. After being trained on base classes, CORE's generative ability can be transferred to novel classes that are similar to those in the base classes. By using these generative features, we can reduce the estimation bias of the class distribution, which makes few-shot learning (FSL) less sensitive to the selection of support data. Our method is generic and flexible and can be used with any feature extractor and classifier. It can be easily integrated into existing FSL approaches. Experiments with different backbones and classifiers show that our proposed method consistently outperforms existing methods on various widely used benchmarks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助123456采纳,获得20
刚刚
夕寸发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
英姑应助七点半采纳,获得10
1秒前
LYP发布了新的文献求助10
1秒前
1秒前
充电宝应助星星采纳,获得10
1秒前
刘海婷完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
黄东胜发布了新的文献求助10
3秒前
现代rong发布了新的文献求助10
3秒前
落后醉易发布了新的文献求助10
3秒前
星辰大海应助cassie采纳,获得10
3秒前
小贝完成签到,获得积分10
3秒前
4秒前
英俊的问夏应助RENFF采纳,获得10
4秒前
morry5007发布了新的文献求助10
4秒前
星星完成签到,获得积分10
5秒前
5秒前
sy7777完成签到,获得积分10
5秒前
5秒前
文献完成签到,获得积分10
6秒前
ning发布了新的文献求助10
6秒前
kk发布了新的文献求助10
6秒前
waiwai完成签到 ,获得积分10
6秒前
7秒前
刘霆勋发布了新的文献求助10
7秒前
顺利的边牧完成签到,获得积分10
7秒前
7秒前
辛勤面包发布了新的文献求助30
7秒前
干净初雪发布了新的文献求助10
8秒前
MC发布了新的文献求助10
8秒前
清脆苑博完成签到,获得积分20
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836