CORE: CORrelation-Guided Feature Enhancement for Few-Shot Image Classification

计算机科学 人工智能 模式识别(心理学) 判别式 分类器(UML) 离群值 特征(语言学) 特征选择 机器学习 特征提取 数据挖掘 语言学 哲学
作者
Jing Xu,Xinglin Pan,Jingquan Wang,Wenjie Pei,Qing Liao,Zenglin Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3098-3110 被引量:1
标识
DOI:10.1109/tnnls.2024.3355774
摘要

Few-shot classification aims to adapt classifiers trained on base classes to novel classes with a few shots. However, the limited amount of training data is often inadequate to represent the intraclass variations in novel classes. This can result in biased estimation of the feature distribution, which in turn results in inaccurate decision boundaries, especially when the support data are outliers. To address this issue, we propose a feature enhancement method called CORrelation-guided feature Enrichment that generates improved features for novel classes using weak supervision from the base classes. The proposed CORrelation-guided feature Enhancement (CORE) method utilizes an autoencoder (AE) architecture but incorporates classification information into its latent space. This design allows the CORE to generate more discriminative features while discarding irrelevant content information. After being trained on base classes, CORE's generative ability can be transferred to novel classes that are similar to those in the base classes. By using these generative features, we can reduce the estimation bias of the class distribution, which makes few-shot learning (FSL) less sensitive to the selection of support data. Our method is generic and flexible and can be used with any feature extractor and classifier. It can be easily integrated into existing FSL approaches. Experiments with different backbones and classifiers show that our proposed method consistently outperforms existing methods on various widely used benchmarks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷孤风发布了新的文献求助10
1秒前
maizencrna完成签到,获得积分10
1秒前
丘比特应助光轮2000采纳,获得10
2秒前
3秒前
4秒前
4秒前
csx应助Madelinephi采纳,获得10
4秒前
顾矜应助生物摸鱼大师采纳,获得10
5秒前
平常的如风完成签到,获得积分10
6秒前
核桃应助zyh采纳,获得30
6秒前
NexusExplorer应助青鸾却梦000采纳,获得10
7秒前
CipherSage应助暮商采纳,获得30
7秒前
shawn发布了新的文献求助10
8秒前
稳重幻嫣完成签到,获得积分20
9秒前
柚子发布了新的文献求助10
10秒前
柒月小鱼完成签到 ,获得积分10
10秒前
12秒前
13秒前
大模型应助柚子采纳,获得10
16秒前
漂流的云朵完成签到,获得积分10
17秒前
17秒前
17秒前
科研通AI6应助MoNeng采纳,获得10
18秒前
蓝天应助yyanxuemin919采纳,获得10
18秒前
shawn完成签到,获得积分10
18秒前
彩w完成签到 ,获得积分10
20秒前
iqa完成签到,获得积分10
20秒前
NexusExplorer应助晴天采纳,获得10
21秒前
漂亮雨柏完成签到,获得积分10
21秒前
21秒前
躺平才有生活完成签到,获得积分10
22秒前
Yyyyuy发布了新的文献求助10
22秒前
23秒前
微末发布了新的文献求助10
23秒前
CipherSage应助zyh采纳,获得30
25秒前
27秒前
Johan完成签到 ,获得积分10
27秒前
27秒前
自由如风完成签到 ,获得积分10
28秒前
123发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563093
求助须知:如何正确求助?哪些是违规求助? 4647860
关于积分的说明 14683144
捐赠科研通 4590036
什么是DOI,文献DOI怎么找? 2518252
邀请新用户注册赠送积分活动 1491004
关于科研通互助平台的介绍 1462318