CORE: CORrelation-Guided Feature Enhancement for Few-Shot Image Classification

计算机科学 人工智能 模式识别(心理学) 判别式 分类器(UML) 离群值 特征(语言学) 特征选择 机器学习 特征提取 数据挖掘 语言学 哲学
作者
Jing Xu,Xinglin Pan,Jingquan Wang,Wenjie Pei,Qing Liao,Zenglin Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3098-3110 被引量:1
标识
DOI:10.1109/tnnls.2024.3355774
摘要

Few-shot classification aims to adapt classifiers trained on base classes to novel classes with a few shots. However, the limited amount of training data is often inadequate to represent the intraclass variations in novel classes. This can result in biased estimation of the feature distribution, which in turn results in inaccurate decision boundaries, especially when the support data are outliers. To address this issue, we propose a feature enhancement method called CORrelation-guided feature Enrichment that generates improved features for novel classes using weak supervision from the base classes. The proposed CORrelation-guided feature Enhancement (CORE) method utilizes an autoencoder (AE) architecture but incorporates classification information into its latent space. This design allows the CORE to generate more discriminative features while discarding irrelevant content information. After being trained on base classes, CORE's generative ability can be transferred to novel classes that are similar to those in the base classes. By using these generative features, we can reduce the estimation bias of the class distribution, which makes few-shot learning (FSL) less sensitive to the selection of support data. Our method is generic and flexible and can be used with any feature extractor and classifier. It can be easily integrated into existing FSL approaches. Experiments with different backbones and classifiers show that our proposed method consistently outperforms existing methods on various widely used benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllroy完成签到,获得积分10
刚刚
lv发布了新的文献求助10
刚刚
Ava应助捷jie采纳,获得30
1秒前
自由飞翔发布了新的文献求助10
1秒前
小杭76应助lrrrrrr采纳,获得10
1秒前
177发布了新的文献求助10
2秒前
脑洞疼应助echo采纳,获得10
2秒前
2秒前
2秒前
YOGA完成签到,获得积分10
2秒前
2秒前
小马甲应助琴_Q123采纳,获得10
2秒前
英姑应助Innogen采纳,获得10
3秒前
Wefaily应助栀子采纳,获得30
3秒前
浮游应助栀子采纳,获得10
3秒前
Owen应助王三采纳,获得10
4秒前
5秒前
5秒前
斯文败类应助glass_light采纳,获得10
5秒前
科研通AI6应助哲别采纳,获得10
6秒前
6秒前
SAY发布了新的文献求助10
6秒前
刘放完成签到,获得积分10
6秒前
ljq完成签到,获得积分10
7秒前
CodeCraft应助高个子的杰采纳,获得10
7秒前
Meyako应助177采纳,获得10
8秒前
干净的尔柳完成签到,获得积分20
8秒前
suiyi发布了新的文献求助10
9秒前
李健应助可靠的妙旋采纳,获得10
9秒前
曼曼完成签到 ,获得积分10
9秒前
10秒前
NexusExplorer应助11111采纳,获得10
10秒前
10秒前
半芹完成签到,获得积分10
10秒前
tyZhang完成签到,获得积分10
12秒前
12秒前
思源应助干净的尔柳采纳,获得10
12秒前
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434739
求助须知:如何正确求助?哪些是违规求助? 4547066
关于积分的说明 14205914
捐赠科研通 4467159
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439364
关于科研通互助平台的介绍 1416076