CORE: CORrelation-Guided Feature Enhancement for Few-Shot Image Classification

计算机科学 人工智能 模式识别(心理学) 判别式 分类器(UML) 离群值 特征(语言学) 特征选择 机器学习 特征提取 数据挖掘 语言学 哲学
作者
Jing Xu,Xinglin Pan,Jingquan Wang,Wenjie Pei,Qing Liao,Zenglin Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3098-3110 被引量:7
标识
DOI:10.1109/tnnls.2024.3355774
摘要

Few-shot classification aims to adapt classifiers trained on base classes to novel classes with a few shots. However, the limited amount of training data is often inadequate to represent the intraclass variations in novel classes. This can result in biased estimation of the feature distribution, which in turn results in inaccurate decision boundaries, especially when the support data are outliers. To address this issue, we propose a feature enhancement method called CORrelation-guided feature Enrichment that generates improved features for novel classes using weak supervision from the base classes. The proposed CORrelation-guided feature Enhancement (CORE) method utilizes an autoencoder (AE) architecture but incorporates classification information into its latent space. This design allows the CORE to generate more discriminative features while discarding irrelevant content information. After being trained on base classes, CORE's generative ability can be transferred to novel classes that are similar to those in the base classes. By using these generative features, we can reduce the estimation bias of the class distribution, which makes few-shot learning (FSL) less sensitive to the selection of support data. Our method is generic and flexible and can be used with any feature extractor and classifier. It can be easily integrated into existing FSL approaches. Experiments with different backbones and classifiers show that our proposed method consistently outperforms existing methods on various widely used benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白云苍狗应助高源伯采纳,获得10
刚刚
SHADY592发布了新的文献求助10
刚刚
桐桐应助土豪的醉香采纳,获得10
刚刚
Jasper应助羊肉泡馍采纳,获得10
2秒前
2秒前
3秒前
3秒前
JamesPei应助D&L采纳,获得10
3秒前
3秒前
5秒前
香蕉觅云应助SHADY592采纳,获得10
6秒前
喜悦代双完成签到,获得积分10
6秒前
6秒前
7秒前
陆拾荒发布了新的文献求助10
7秒前
旺旺完成签到,获得积分10
8秒前
坦率灵槐应助纪汶欣采纳,获得20
8秒前
奋斗刚发布了新的文献求助10
8秒前
sincere-辉发布了新的文献求助10
9秒前
10秒前
11秒前
Owen应助lilili采纳,获得10
11秒前
11秒前
11秒前
非了个凡完成签到 ,获得积分10
12秒前
YEGE发布了新的文献求助10
12秒前
王威完成签到,获得积分10
13秒前
华仔应助不见木棉采纳,获得10
13秒前
13秒前
pp发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
今后应助卡萨丁那看啥采纳,获得10
15秒前
aben050361发布了新的文献求助10
16秒前
乐乐应助番茄鱼采纳,获得10
16秒前
大方的黄豆完成签到,获得积分10
16秒前
Lucas应助胖虎采纳,获得10
16秒前
陆拾荒完成签到,获得积分10
16秒前
D&L发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648614
求助须知:如何正确求助?哪些是违规求助? 4775865
关于积分的说明 15044750
捐赠科研通 4807529
什么是DOI,文献DOI怎么找? 2570836
邀请新用户注册赠送积分活动 1527657
关于科研通互助平台的介绍 1486538