CORE: CORrelation-Guided Feature Enhancement for Few-Shot Image Classification

计算机科学 人工智能 模式识别(心理学) 判别式 分类器(UML) 离群值 特征(语言学) 特征选择 机器学习 特征提取 数据挖掘 哲学 语言学
作者
Jing Xu,Xinglin Pan,Jingquan Wang,Wenjie Pei,Qing Liao,Zenglin Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3098-3110 被引量:1
标识
DOI:10.1109/tnnls.2024.3355774
摘要

Few-shot classification aims to adapt classifiers trained on base classes to novel classes with a few shots. However, the limited amount of training data is often inadequate to represent the intraclass variations in novel classes. This can result in biased estimation of the feature distribution, which in turn results in inaccurate decision boundaries, especially when the support data are outliers. To address this issue, we propose a feature enhancement method called CORrelation-guided feature Enrichment that generates improved features for novel classes using weak supervision from the base classes. The proposed CORrelation-guided feature Enhancement (CORE) method utilizes an autoencoder (AE) architecture but incorporates classification information into its latent space. This design allows the CORE to generate more discriminative features while discarding irrelevant content information. After being trained on base classes, CORE's generative ability can be transferred to novel classes that are similar to those in the base classes. By using these generative features, we can reduce the estimation bias of the class distribution, which makes few-shot learning (FSL) less sensitive to the selection of support data. Our method is generic and flexible and can be used with any feature extractor and classifier. It can be easily integrated into existing FSL approaches. Experiments with different backbones and classifiers show that our proposed method consistently outperforms existing methods on various widely used benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
福福发布了新的文献求助10
刚刚
坦率的匪应助谷德耐采纳,获得10
1秒前
1秒前
撸撸大仙发布了新的文献求助10
1秒前
1秒前
Nothing完成签到,获得积分10
2秒前
2秒前
3秒前
wtt发布了新的文献求助10
4秒前
4秒前
4秒前
旅行者发布了新的文献求助10
6秒前
wtt完成签到,获得积分10
9秒前
虚幻的采萱完成签到,获得积分20
10秒前
mailure发布了新的文献求助10
10秒前
科研通AI5应助zhouz采纳,获得10
11秒前
11秒前
700w完成签到 ,获得积分0
11秒前
12秒前
共享精神应助旅行者采纳,获得10
14秒前
香蕉觅云应助charles采纳,获得20
15秒前
福福完成签到,获得积分10
15秒前
天天快乐应助111采纳,获得10
15秒前
娟儿完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
淡然完成签到,获得积分20
20秒前
Owen应助Aria采纳,获得10
22秒前
tang完成签到,获得积分10
22秒前
萧水白应助liaomr采纳,获得10
23秒前
伶俐绿柏完成签到 ,获得积分10
23秒前
da发布了新的文献求助10
24秒前
Mss发布了新的文献求助10
24秒前
SMULJL发布了新的文献求助10
25秒前
英姑应助科研通管家采纳,获得10
27秒前
Starwalker应助科研通管家采纳,获得10
27秒前
da发布了新的文献求助10
27秒前
好困应助科研通管家采纳,获得10
27秒前
Akim应助科研通管家采纳,获得10
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979584
求助须知:如何正确求助?哪些是违规求助? 3523532
关于积分的说明 11217894
捐赠科研通 3261031
什么是DOI,文献DOI怎么找? 1800369
邀请新用户注册赠送积分活动 879064
科研通“疑难数据库(出版商)”最低求助积分说明 807152