Forecasting food price inflation during global crises

膨胀(宇宙学) 经济 食品价格 计量经济学 自回归模型 金融危机 核心通货膨胀 粮食安全 通货膨胀目标 宏观经济学 货币政策 农业 地理 物理 考古 理论物理学
作者
Patricia Toledo,Roberto Duncan
出处
期刊:Journal of Forecasting [Wiley]
被引量:1
标识
DOI:10.1002/for.3061
摘要

Abstract In this paper, we consider the forecasting of domestic food price inflation (DFPI) using global indicators, with emphasis on episodes of macroeconomic turbulence, namely, the Global Financial Crisis (GFC) and the COVID‐19 pandemic and its subsequent repercussions. Our monthly dataset covers about two decades for more than a hundred economies. We employ dynamic model averaging (DMA) to tackle both model uncertainty and parameter instability and produce pseudo out‐of‐sample forecasts. Thus, we are able to focus on the forecasting ability of the global predictors of DFPI before and during the global crises. We find evidence that the DMA specification tends to outperform statistical models frequently used in the literature such as random walks, autoregressive models, and time‐varying parameter models, especially during global crises. We also identify the most successful predictors during the crises using their posterior probabilities of inclusion. By comparing the distributions of such probabilities, we find that the international food price inflation is the most useful predictor of DFPI for numerous countries during both crises. Other indicators such as domestic CPI inflation as well as the international inflation of agricultural commodities, fertilizers, and other food categories improved their forecasting ability, particularly during the COVID‐19 period.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
1秒前
小马甲应助mimi采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
雪白问兰应助科研通管家采纳,获得30
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
zzzzzz应助科研通管家采纳,获得20
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
sidegate应助科研通管家采纳,获得10
1秒前
prosperp应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
li完成签到,获得积分10
1秒前
1秒前
mlml完成签到,获得积分10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
Zn应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
Zn应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
jimmy发布了新的文献求助10
2秒前
华仔应助hhh采纳,获得10
3秒前
hug完成签到,获得积分10
3秒前
科研通AI5应助cxwong采纳,获得10
3秒前
3秒前
沉敛一生完成签到,获得积分10
3秒前
hhy发布了新的文献求助10
3秒前
starry发布了新的文献求助10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672