亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-model fusion stacking ensemble learning method for the prediction of berberine by FT-NIR spectroscopy

阿达布思 Boosting(机器学习) 集成学习 随机森林 梯度升压 机器学习 计算机科学 模式识别(心理学) 人工智能 数学 支持向量机
作者
Xiaoyu Li,Huazhou Chen,Lili Xu,Qiushuang Mo,Xinrong Du,Guoqiang Tang
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:137: 105169-105169 被引量:6
标识
DOI:10.1016/j.infrared.2024.105169
摘要

Rhizoma Coptidis is a Chinese herbal medicine with antibacterial and anti-inflammatory properties. It has extensive applications in modern medicine. The content of berberine in Rhizoma Coptidis directly determines its quality. Fourier transforms near-infrared (FT-NIR) spectroscopy is a commonly used non-destructive method for rapidly detecting berberine content. In contrast to single-supervised learning algorithms in machine learning, ensemble learning combines individual learning algorithms to create a stable and better-performing strong-supervised model. This study collected spectral data of Rhizoma Coptidis using FT-NIR spectroscopy technology and established a chemometric model using a stacking ensemble approach with multiple models. Partial Least Squares (PLS), Adaptive Boosting (AdaBoost), Gradient boosting decision trees (GBDT), random forest (RF), and extreme gradient boosting (XGBoost) regression models were chosen as alternative base models, different Stacking models were established by random combinations. To fully leverage the strengths of each model and enhance predictive capability, an adaptive inertia weight particle swarm optimization algorithm (AWPSO) was used to search for the optimal parameters. The correlation coefficient of the test (RT) and the root mean square error of the test (RMSET) systematically evaluated the model performance. Finally, AWPSO-RF, AWPSO-XGBoost, and AWPSO-AdaBoost were selected as the base models. The RMSET and RT for RF, XGBoost, and AdaBoost were 0.226, 0.250, 0.195, and 0.871, 0.830, 0.927. After optimizing with the AWPSO algorithm, the RMSET and RT for AWPSO-RF, AWPSO-XGBoost, and AWPSO-AdaBoost were 0.226, 0.245, 0.194, and 0.871, 0.843, 0.922, respectively. The RMSET and RT values for the stacking ensemble were 0.174 and 0.932. The prediction accuracy and generalization ability of multi-model fusion stacking ensemble learning are superior to the single-model regression methods. Therefore, the stacking ensemble learning method that combines AdaBoost, RF, and XGBoost regression models is effective and feasible for assisting in the detection of berberine content in Rhizoma Coptidis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
Nicho发布了新的文献求助10
17秒前
科研通AI2S应助神勇葵阴采纳,获得10
19秒前
1分钟前
脑洞疼应助自驾小胖采纳,获得10
2分钟前
可爱的函函应助漫步随心采纳,获得10
3分钟前
3分钟前
漫步随心发布了新的文献求助10
3分钟前
捉迷藏完成签到,获得积分10
3分钟前
漫步随心完成签到,获得积分20
3分钟前
3分钟前
3分钟前
自驾小胖完成签到,获得积分20
4分钟前
4分钟前
自驾小胖发布了新的文献求助10
4分钟前
4分钟前
pp完成签到 ,获得积分0
4分钟前
mzhang2完成签到 ,获得积分10
5分钟前
5分钟前
孝顺的雁芙完成签到,获得积分10
7分钟前
7分钟前
搜集达人应助yayee采纳,获得10
7分钟前
越野完成签到 ,获得积分10
8分钟前
orixero应助孝顺的雁芙采纳,获得10
8分钟前
8分钟前
8分钟前
LMH完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
yayee发布了新的文献求助10
10分钟前
11分钟前
jcm完成签到 ,获得积分10
11分钟前
复杂的傲柔完成签到 ,获得积分10
11分钟前
Costing完成签到 ,获得积分10
12分钟前
dpul发布了新的文献求助10
15分钟前
体贴问丝完成签到 ,获得积分10
15分钟前
小二郎应助dpul采纳,获得10
15分钟前
15分钟前
腹愁者完成签到,获得积分10
15分钟前
沿途有你完成签到 ,获得积分10
16分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371255
求助须知:如何正确求助?哪些是违规求助? 2989477
关于积分的说明 8735819
捐赠科研通 2672643
什么是DOI,文献DOI怎么找? 1464164
科研通“疑难数据库(出版商)”最低求助积分说明 677409
邀请新用户注册赠送积分活动 668706