A Review of Electrolysis Techniques to Produce Hydrogen for a Futuristic Hydrogen Economy

电解 聚合物电解质膜电解 高压电解 电解水 电解质 电力转天然气 工艺工程 制氢 氢经济 高温电解 化学 电极 工程类 有机化学 物理化学
作者
Vijay Parthasarthy,Siddhant Srivastava,Riya Bhattacharya,Sudeep Katakam,Akash Krishnadoss,Gaurav Mitra,Debajyoti Bose
标识
DOI:10.1002/9781394174805.ch13
摘要

Chapter 13 A Review of Electrolysis Techniques to Produce Hydrogen for a Futuristic Hydrogen Economy Vijay Parthasarthy, Vijay Parthasarthy Department of Examinations, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharastra, IndiaSearch for more papers by this authorSiddhant Srivastava, Siddhant Srivastava Faculty of Applied Sciences & Biotechnology, School of Biotechnology, Shoolini University of Biotechnology & Management Sciences, Solan, Himachal Pradesh, IndiaSearch for more papers by this authorRiya Bhattacharya, Riya Bhattacharya School of Technology, Woxsen University, Hyderabad, Telangana, IndiaSearch for more papers by this authorSudeep Katakam, Sudeep Katakam Department of Chemical Engineering, School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, IndiaSearch for more papers by this authorAkash Krishnadoss, Akash Krishnadoss Department of Chemical Engineering, School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, IndiaSearch for more papers by this authorGaurav Mitra, Gaurav Mitra Department of Chemistry, University of Massachusetts, Amherst, United StatesSearch for more papers by this authorDebajyoti Bose, Debajyoti Bose School of Technology, Woxsen University, Hyderabad, Telangana, IndiaSearch for more papers by this author Vijay Parthasarthy, Vijay Parthasarthy Department of Examinations, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharastra, IndiaSearch for more papers by this authorSiddhant Srivastava, Siddhant Srivastava Faculty of Applied Sciences & Biotechnology, School of Biotechnology, Shoolini University of Biotechnology & Management Sciences, Solan, Himachal Pradesh, IndiaSearch for more papers by this authorRiya Bhattacharya, Riya Bhattacharya School of Technology, Woxsen University, Hyderabad, Telangana, IndiaSearch for more papers by this authorSudeep Katakam, Sudeep Katakam Department of Chemical Engineering, School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, IndiaSearch for more papers by this authorAkash Krishnadoss, Akash Krishnadoss Department of Chemical Engineering, School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, IndiaSearch for more papers by this authorGaurav Mitra, Gaurav Mitra Department of Chemistry, University of Massachusetts, Amherst, United StatesSearch for more papers by this authorDebajyoti Bose, Debajyoti Bose School of Technology, Woxsen University, Hyderabad, Telangana, IndiaSearch for more papers by this author Book Editor(s):Surajit Mondal, Surajit MondalSearch for more papers by this authorAdesh Kumar, Adesh KumarSearch for more papers by this authorRupendra Kumar Pachauri, Rupendra Kumar PachauriSearch for more papers by this authorAmit Kumar Mondal, Amit Kumar MondalSearch for more papers by this authorVishal Kumar Singh, Vishal Kumar SinghSearch for more papers by this authorAmit Kumar Sharma, Amit Kumar SharmaSearch for more papers by this author First published: 11 January 2024 https://doi.org/10.1002/9781394174805.ch13 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Hydrogen is one of the most efficient sources of energy that is seen as an alternative fuel. Hydrogen can be produced by various methods. One of them is anion electrode membrane electrolysis. Electrolysis of water in an anionic exchange membrane with a basic electrolyte to yield hydrogen and oxygen through oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is called anion exchange membrane (AEM) electrolysis. AEM electrolysis is one of the technologies under research that can provide the solution for the energy crisis existing today and a future where all the hydrocarbon sources will be depleted. The source for this process is abundant in nature, and the pollution level is very minimal. If devised properly, this can be the perfect solution for the future. In this review, we will take a look at the various steps and methods devised to improve the performance of AEM electrolysis. The work done, its novelty, the inference we get from this paper, and its limitations are also discussed. References Bhattacharya , R. and Bose , D. , Energy and water: COVID-19 impacts and implications for interconnected sustainable development goals . Environ. Prog. Sustain. Energy , 42 , 1 , e14018 , 2023 . 10.1002/ep.14018 CASPubMedWeb of Science®Google Scholar Bose , D. , Bhattacharya , R. , Gopinath , M. , Vijay , P. , Krishnakumar , B. Bioelectricity production and bioremediation from sugarcane industry wastewater using microbial fuel cells with activated carbon cathodes . Results Eng. , 18 , 101052 , 2023 . 10.1016/j.rineng.2023.101052 CASGoogle Scholar Abas , N. , Kalair , A. , Khan , N. , Review of fossil fuels and future energy technologies . Futures , 69 , 31 – 49 , 2015 . 10.1016/j.futures.2015.03.003 Web of Science®Google Scholar de Almeida , P. and Silva , P.D. , Timing and future consequences of the peak of oil production . Futures , 43 , 10 , 1044 – 1055 , 2011 , Special Issue: Energy Futures. 10.1016/j.futures.2011.07.004 Web of Science®Google Scholar Vidas , L. and Castro , R. , Recent developments on hydrogen production technologies: State-of-the-art review with a focus on green-electrolysis . Appl. Sci. , 11 , 23 , 1 – 27 , 2021 . 10.3390/app112311363 Google Scholar Ball , M. and Wietschel , M. , The future of hydrogen – opportunities and challenges . Int. J. Hydrogen Energy , 34 , 2 , 615 – 627 , 2009 . 10.1016/j.ijhydene.2008.11.014 CASWeb of Science®Google Scholar Xu , J. , Liu , T. , Li , J. , Li , B. , Liu , Y. , Zhang , B. , Xiong , D. , Amorim , I. , Li , W. , Liu , L. , Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide . Energy Environ. Sci. , 11 , 1819 – 1827 , 2018 . 10.1039/C7EE03603E CASWeb of Science®Google Scholar Cheng , Y. and Jiang , S.P. , Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes . Prog. Nat. Sci.: Mater. Int. , 25 , 6 , 545 – 553 , 2015 . 10.1016/j.pnsc.2015.11.008 CASWeb of Science®Google Scholar Anantharaj , S. , Ede , S.R. , Karthick , K. , Selvasundarasekar , S.S. , Sangeetha , K. , Karthik , P. , Kundu , S. , Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment . Energy Environ. Sci. , 11 , 744 – 771 , 2018 . 10.1039/C7EE03457A CASWeb of Science®Google Scholar Ferriday , T.B. , Middleton , P.H. , Kolhe , M.L. , Review of the hydrogen evolution reactionmdash;a basic approach . Energies , 14 , 24 , 8535 , 2021 . 10.3390/en14248535 CASWeb of Science®Google Scholar Gennero de Chialvo , M.R. and Chialvo , A.C. , Hydrogen evolution reaction: Analysis of the volmer-heyrovsky-tafel mechanism with a generalized adsorption model . J. Electroanal. Chem. , 372 , 1 , 209 – 223 , 1994 . 10.1016/0022-0728(93)03043-O Web of Science®Google Scholar Borm , O. and Harrison , S.B. , Reliable off-grid power supply utilizing green hydrogen . Clean Energy , 5 , 3 , 441 – 446 , 08 2021 . 10.1093/ce/zkab025 Google Scholar Maqsood , Q. , Ameen , E. , Mahnoor , M. , Sumrin , A. , Akhtar , M.W. , Bhattacharya , R. , Bose , D. , Applications of microbial fuel cell technology and strategies to boost bioreactor performance . Nat. Environ. Pollut. Technol. , 21 , 3 , 1191 – 1199 , 2022 Sep 1. 10.46488/NEPT.2022.v21i03.024 CASGoogle Scholar Thanasilp , S. and Hunsom , M. , Effect of MEA fabrication techniques on the cell performance of Pt–Pd/C electrocatalyst for oxygen reduction in PEM fuel cell . Fuel , 89 , 12 , 3847 – 3852 , 2010 . 10.1016/j.fuel.2010.07.008 CASWeb of Science®Google Scholar Wolf Vielstich , Hubert A. Gasteiger , and Harumi Yokokawa , eds. Handbook of fuel cells: Advances in electrocatalysis, materials, diagnostics and durability , 5 , 6. John Wiley & Sons , UK , 2009 . Google Scholar Frey , T. and Linardi , M. , Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance . Electrochim. Acta , 50 , 99 – 105 , 2004 . 10.1016/j.electacta.2004.07.017 CASWeb of Science®Google Scholar Parrondo , J. , Arges , C.G. , Niedzwiecki , M. , Anderson , E.B. , Ayers , K.E. , Ramani , V. , Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis . RSC Adv. , 4 , 9875 – 9879 , 2014 . 10.1039/c3ra46630b CASWeb of Science®Google Scholar Nazemi , M. , Padgett , J. , Hatzell , M.C. , Acid/base multi-ion exchange membrane-based electrolysis system for water splitting . Energy Technol. , 5 , 8 , 1191 – 1194 , 2017 . 10.1002/ente.201600629 CASWeb of Science®Google Scholar Vincent , I. , Kruger , A. , Bessarabov , D. , Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis . Int. J. Hydrogen Energy , 42 , 16 , 10752 – 10761 , 2017 . 10.1016/j.ijhydene.2017.03.069 CASWeb of Science®Google Scholar Vincent , I. and Bessarabov , D. , Low cost hydrogen production by anion exchange membrane electrolysis: A review . Renew. Sustain. Energy Rev. , 81 , 1690 – 1704 , 2018 . 10.1016/j.rser.2017.05.258 CASWeb of Science®Google Scholar Chi , J. and Yu , H. , Water electrolysis based on renewable energy for hydrogen production . Chin. J. Catal. , 39 , 3 , 390 – 394 , 2018 . 10.1016/S1872-2067(17)62949-8 CASWeb of Science®Google Scholar Vincent , I. , Hydrogen production by water electrolysis with an ultrathin anion-exchange membrane (AEM) . Int. J. Electrochem. Sci. , 13 , 11347 – 11358 , 12, 2018 . 10.20964/2018.12.84 CASWeb of Science®Google Scholar Lim , A. , Kim , H.J. , Henkensmeier , D. , Yoo , S.J. , Kim , J.Y. , Lee , S.Y. , Sung , Y.-E. , Jang , J.H. , Park , H.S. , A study on electrode fabrication and operation variables affecting the performance of anion exchange membrane water electrolysis . J. Ind. Eng. Chem. , 76 , 410 – 418 , 2019 . 10.1016/j.jiec.2019.04.007 CASWeb of Science®Google Scholar Vincent , I. , Lee , E.-C. , Kim , H.-M. , Highly cost-effective platinum-free anion exchange membrane electrolysis for large scale energy storage and hydrogen production . RSC Adv. , 10 , 37429 – 37438 , 2020 . 10.1039/D0RA07190K CASPubMedWeb of Science®Google Scholar Zakaria , Z. and Kamarudin , S.K. , A review of alkaline solid polymer membrane in the application of AEM electrolyzer: Materials and characterization . Int. J. Energy Res. , 45 , 13 , 18337 – 18354 , 2021 . 10.1002/er.6983 CASWeb of Science®Google Scholar Razmjooei , F. , Morawietz , T. , Taghizadeh , E. , Hadjixenophontos , E. , Mues , L. , Gerle , M. , Wood , B.D. , Harms , C. , Gago , A.S. , Ansar , S.A. , Friedrich , K.A. , Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer . Joule , 5 , 7 , 1776 – 1799 , 2021 . 10.1016/j.joule.2021.05.006 CASWeb of Science®Google Scholar Cossar , E. , Barnett , A.O. , Seland , F. , Safari , R. , Botton , G.A. , Baranova , E.A. , Ionomer content optimization in nickel-iron-based anodes with and without ceria for anion exchange membrane water electrolysis . J. Power Sources , 514 , 230563 , 2021 . 10.1016/j.jpowsour.2021.230563 CASWeb of Science®Google Scholar Vincent , I. , Lee , E.-C. , Kim , H.-M. , Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production . Sci. Rep. , 11 , 1 , 1 – 12 , 2021 . 10.1038/s41598-020-80683-6 PubMedWeb of Science®Google Scholar Bhattacharya , R. , Kumari , A. , Bose , D. , Impact of COVID-19 on SDG 6 and integrated approaches for clean water access and sanitation . Sustainability Clim. Change , 15 , 5 , 298 – 306 , 2022 . 10.1089/scc.2022.0040 Google Scholar Leng , Y. , Chen , G. , Mendoza , A.J. , Tighe , T.B. , Hickner , M.A. , Wang , C.Y. , Solid-state water electrolysis with an alkaline membrane . J. Am. Chem. Soc. , 134 , 22 , 9054 – 9057 , 2012 . 10.1021/ja302439z CASPubMedWeb of Science®Google Scholar Pavel , C.C. , Cecconi , F. , Emiliani , C. , Santiccioli , S. , Scaffidi , A. , Catanorchi , S. , Comotti , M. , Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis . Angew. Chem., Int. Ed. , 53 , 5 , 1378 – 1381 , 2014 . 10.1002/anie.201308099 CASPubMedWeb of Science®Google Scholar Lei , C. , Yang , K. , Wang , G. , Wang , G. , Lu , J. , Xiao , L. , Zhuang , L. , Impact of catalyst reconstruction on the durability of anion exchange membrane water electrolysis . ACS Sustain. Chem. Eng. , 10 , 50 , 16725 – 16733 , 2022 . 10.1021/acssuschemeng.2c04855 CASWeb of Science®Google Scholar Dongguo , L. , Motz , A.R. , Bae , C. , Fujimoto , C. , Yang , G. , Zhang , F.Y. , Ayers , K.E. , Kim , Y.S. , Durability of anion exchange membrane water electrolyzers . Energy Environ. Sci. , 14 , 6 , 3393 – 3419 , 2021 . 10.1039/D0EE04086J Web of Science®Google Scholar Park , J.E. , Kang , S.Y. , Oh , S.H. , Kim , J.K. , Lim , M.S. , Ahn , C.Y. , Sung , Y.E. , High-performance anion exchange membrane water electrolysis . Electrochimica Acta , 295 , 99 – 106 , 2019 . 10.1016/j.electacta.2018.10.143 CASWeb of Science®Google Scholar Faraj , M. , Boccia , M. , Miller , H. , Martini , F. , Borsacchi , S. , Geppi , M. , Pucci , A. , New LDPE based anion-exchange membranes for alkaline solid polymeric electrolyte water electrolysis . Int. J. Hydrog. Energy , 37 , 20 , 14992 – 15002 , 2012 . 10.1016/j.ijhydene.2012.08.012 CASWeb of Science®Google Scholar Wang , X. , Li , M. , Golding , B.T. , Sadeghi , M. , Cao , Y. , Yu , E.H. , Scott , K. , A polytetrafluoroethylenequaternary 1, 4-diazabicyclo-[2.2.2]-octane polysulfone composite membrane for alkaline anion exchange membrane fuel cells . Int. J. Hydrog. Energ. , 36 , 16 , 10022 – 10026 , 2011 . 10.1016/j.ijhydene.2011.05.054 CASWeb of Science®Google Scholar Zeng , Q.H. , Liu , Q.L. , Broadwell , I. , Zhu , A.M. , Xiong , Y. , Tu , X.P. , Anion exchange membranes based on quaternized polystyrene-block-poly (ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells . J. Membr. Sci. , 349 , 1–2 , 237 – 243 , 2010 . 10.1016/j.memsci.2009.11.051 CASWeb of Science®Google Scholar Seetharaman , S. , Balaji , R. , Ramya , K. , Dhathathreyan , K.S. , Velan , M. , Graphene oxide modified non-noble metal electrode for alkaline anion exchange membrane water electrolyzers . Int. J. Hydrog. Energ. , 38 , 35 , 14934 – 14942 , 2013 . 10.1016/j.ijhydene.2013.09.033 CASWeb of Science®Google Scholar Joe , J.D. , Kumar , D.S. , Sivakumar , P. , Production of hydrogen by anion exchange membrane using AWE . Int. J. Sci. Technol. Res. , 3 , 38 – 42 , 2014 . Google Scholar Pandiarajan , T. , Berchmans , L.J. , Ravichandran , S. , Fabrication of spinel ferrite based alkaline anion exchange membrane water electrolysers for hydrogen production . RSC Adv. , 5 , 43 , 34100 – 34108 , 2015 . 10.1039/C5RA01123J CASWeb of Science®Google Scholar Clean and Renewable Energy Production ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tkdzjr12345完成签到,获得积分10
1秒前
xxnn发布了新的文献求助10
1秒前
科目三应助GYPP采纳,获得10
1秒前
ssxw发布了新的文献求助10
1秒前
司徒涟妖完成签到,获得积分10
3秒前
4秒前
领导范儿应助wyh采纳,获得10
6秒前
xxnn完成签到,获得积分10
7秒前
7秒前
7秒前
英姑应助可乐加冰采纳,获得30
8秒前
10秒前
10秒前
Mine虚无发布了新的文献求助10
12秒前
菜菜的黄发布了新的文献求助10
14秒前
15秒前
胖达发布了新的文献求助10
15秒前
遮沙避风了完成签到,获得积分10
16秒前
17秒前
lilili发布了新的文献求助10
18秒前
20秒前
哈哈哈哈完成签到,获得积分20
22秒前
22秒前
打打应助飘逸的三毒采纳,获得10
23秒前
ocdspkss发布了新的文献求助10
23秒前
李爱国应助fjhsg25采纳,获得10
24秒前
兔宝宝发布了新的文献求助10
25秒前
26秒前
壮观以松发布了新的文献求助10
27秒前
mmddlj完成签到 ,获得积分10
27秒前
28秒前
哈哈哈哈发布了新的文献求助20
28秒前
28秒前
29秒前
29秒前
30秒前
31秒前
31秒前
GYPP发布了新的文献求助10
31秒前
Amilylee7272应助chloe777采纳,获得30
33秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387570
求助须知:如何正确求助?哪些是违规求助? 3000244
关于积分的说明 8790173
捐赠科研通 2686176
什么是DOI,文献DOI怎么找? 1471493
科研通“疑难数据库(出版商)”最低求助积分说明 680352
邀请新用户注册赠送积分活动 673072