摘要
Chapter 13 A Review of Electrolysis Techniques to Produce Hydrogen for a Futuristic Hydrogen Economy Vijay Parthasarthy, Vijay Parthasarthy Department of Examinations, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharastra, IndiaSearch for more papers by this authorSiddhant Srivastava, Siddhant Srivastava Faculty of Applied Sciences & Biotechnology, School of Biotechnology, Shoolini University of Biotechnology & Management Sciences, Solan, Himachal Pradesh, IndiaSearch for more papers by this authorRiya Bhattacharya, Riya Bhattacharya School of Technology, Woxsen University, Hyderabad, Telangana, IndiaSearch for more papers by this authorSudeep Katakam, Sudeep Katakam Department of Chemical Engineering, School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, IndiaSearch for more papers by this authorAkash Krishnadoss, Akash Krishnadoss Department of Chemical Engineering, School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, IndiaSearch for more papers by this authorGaurav Mitra, Gaurav Mitra Department of Chemistry, University of Massachusetts, Amherst, United StatesSearch for more papers by this authorDebajyoti Bose, Debajyoti Bose School of Technology, Woxsen University, Hyderabad, Telangana, IndiaSearch for more papers by this author Vijay Parthasarthy, Vijay Parthasarthy Department of Examinations, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharastra, IndiaSearch for more papers by this authorSiddhant Srivastava, Siddhant Srivastava Faculty of Applied Sciences & Biotechnology, School of Biotechnology, Shoolini University of Biotechnology & Management Sciences, Solan, Himachal Pradesh, IndiaSearch for more papers by this authorRiya Bhattacharya, Riya Bhattacharya School of Technology, Woxsen University, Hyderabad, Telangana, IndiaSearch for more papers by this authorSudeep Katakam, Sudeep Katakam Department of Chemical Engineering, School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, IndiaSearch for more papers by this authorAkash Krishnadoss, Akash Krishnadoss Department of Chemical Engineering, School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, IndiaSearch for more papers by this authorGaurav Mitra, Gaurav Mitra Department of Chemistry, University of Massachusetts, Amherst, United StatesSearch for more papers by this authorDebajyoti Bose, Debajyoti Bose School of Technology, Woxsen University, Hyderabad, Telangana, IndiaSearch for more papers by this author Book Editor(s):Surajit Mondal, Surajit MondalSearch for more papers by this authorAdesh Kumar, Adesh KumarSearch for more papers by this authorRupendra Kumar Pachauri, Rupendra Kumar PachauriSearch for more papers by this authorAmit Kumar Mondal, Amit Kumar MondalSearch for more papers by this authorVishal Kumar Singh, Vishal Kumar SinghSearch for more papers by this authorAmit Kumar Sharma, Amit Kumar SharmaSearch for more papers by this author First published: 11 January 2024 https://doi.org/10.1002/9781394174805.ch13 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Hydrogen is one of the most efficient sources of energy that is seen as an alternative fuel. Hydrogen can be produced by various methods. One of them is anion electrode membrane electrolysis. Electrolysis of water in an anionic exchange membrane with a basic electrolyte to yield hydrogen and oxygen through oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is called anion exchange membrane (AEM) electrolysis. AEM electrolysis is one of the technologies under research that can provide the solution for the energy crisis existing today and a future where all the hydrocarbon sources will be depleted. The source for this process is abundant in nature, and the pollution level is very minimal. If devised properly, this can be the perfect solution for the future. In this review, we will take a look at the various steps and methods devised to improve the performance of AEM electrolysis. The work done, its novelty, the inference we get from this paper, and its limitations are also discussed. References Bhattacharya , R. and Bose , D. , Energy and water: COVID-19 impacts and implications for interconnected sustainable development goals . Environ. Prog. Sustain. Energy , 42 , 1 , e14018 , 2023 . 10.1002/ep.14018 CASPubMedWeb of Science®Google Scholar Bose , D. , Bhattacharya , R. , Gopinath , M. , Vijay , P. , Krishnakumar , B. Bioelectricity production and bioremediation from sugarcane industry wastewater using microbial fuel cells with activated carbon cathodes . Results Eng. , 18 , 101052 , 2023 . 10.1016/j.rineng.2023.101052 CASGoogle Scholar Abas , N. , Kalair , A. , Khan , N. , Review of fossil fuels and future energy technologies . Futures , 69 , 31 – 49 , 2015 . 10.1016/j.futures.2015.03.003 Web of Science®Google Scholar de Almeida , P. and Silva , P.D. , Timing and future consequences of the peak of oil production . Futures , 43 , 10 , 1044 – 1055 , 2011 , Special Issue: Energy Futures. 10.1016/j.futures.2011.07.004 Web of Science®Google Scholar Vidas , L. and Castro , R. , Recent developments on hydrogen production technologies: State-of-the-art review with a focus on green-electrolysis . Appl. Sci. , 11 , 23 , 1 – 27 , 2021 . 10.3390/app112311363 Google Scholar Ball , M. and Wietschel , M. , The future of hydrogen – opportunities and challenges . Int. J. Hydrogen Energy , 34 , 2 , 615 – 627 , 2009 . 10.1016/j.ijhydene.2008.11.014 CASWeb of Science®Google Scholar Xu , J. , Liu , T. , Li , J. , Li , B. , Liu , Y. , Zhang , B. , Xiong , D. , Amorim , I. , Li , W. , Liu , L. , Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide . Energy Environ. Sci. , 11 , 1819 – 1827 , 2018 . 10.1039/C7EE03603E CASWeb of Science®Google Scholar Cheng , Y. and Jiang , S.P. , Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes . Prog. Nat. Sci.: Mater. Int. , 25 , 6 , 545 – 553 , 2015 . 10.1016/j.pnsc.2015.11.008 CASWeb of Science®Google Scholar Anantharaj , S. , Ede , S.R. , Karthick , K. , Selvasundarasekar , S.S. , Sangeetha , K. , Karthik , P. , Kundu , S. , Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment . Energy Environ. Sci. , 11 , 744 – 771 , 2018 . 10.1039/C7EE03457A CASWeb of Science®Google Scholar Ferriday , T.B. , Middleton , P.H. , Kolhe , M.L. , Review of the hydrogen evolution reactionmdash;a basic approach . Energies , 14 , 24 , 8535 , 2021 . 10.3390/en14248535 CASWeb of Science®Google Scholar Gennero de Chialvo , M.R. and Chialvo , A.C. , Hydrogen evolution reaction: Analysis of the volmer-heyrovsky-tafel mechanism with a generalized adsorption model . J. Electroanal. Chem. , 372 , 1 , 209 – 223 , 1994 . 10.1016/0022-0728(93)03043-O Web of Science®Google Scholar Borm , O. and Harrison , S.B. , Reliable off-grid power supply utilizing green hydrogen . Clean Energy , 5 , 3 , 441 – 446 , 08 2021 . 10.1093/ce/zkab025 Google Scholar Maqsood , Q. , Ameen , E. , Mahnoor , M. , Sumrin , A. , Akhtar , M.W. , Bhattacharya , R. , Bose , D. , Applications of microbial fuel cell technology and strategies to boost bioreactor performance . Nat. Environ. Pollut. Technol. , 21 , 3 , 1191 – 1199 , 2022 Sep 1. 10.46488/NEPT.2022.v21i03.024 CASGoogle Scholar Thanasilp , S. and Hunsom , M. , Effect of MEA fabrication techniques on the cell performance of Pt–Pd/C electrocatalyst for oxygen reduction in PEM fuel cell . Fuel , 89 , 12 , 3847 – 3852 , 2010 . 10.1016/j.fuel.2010.07.008 CASWeb of Science®Google Scholar Wolf Vielstich , Hubert A. Gasteiger , and Harumi Yokokawa , eds. Handbook of fuel cells: Advances in electrocatalysis, materials, diagnostics and durability , 5 , 6. John Wiley & Sons , UK , 2009 . Google Scholar Frey , T. and Linardi , M. , Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance . Electrochim. Acta , 50 , 99 – 105 , 2004 . 10.1016/j.electacta.2004.07.017 CASWeb of Science®Google Scholar Parrondo , J. , Arges , C.G. , Niedzwiecki , M. , Anderson , E.B. , Ayers , K.E. , Ramani , V. , Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis . RSC Adv. , 4 , 9875 – 9879 , 2014 . 10.1039/c3ra46630b CASWeb of Science®Google Scholar Nazemi , M. , Padgett , J. , Hatzell , M.C. , Acid/base multi-ion exchange membrane-based electrolysis system for water splitting . Energy Technol. , 5 , 8 , 1191 – 1194 , 2017 . 10.1002/ente.201600629 CASWeb of Science®Google Scholar Vincent , I. , Kruger , A. , Bessarabov , D. , Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis . Int. J. Hydrogen Energy , 42 , 16 , 10752 – 10761 , 2017 . 10.1016/j.ijhydene.2017.03.069 CASWeb of Science®Google Scholar Vincent , I. and Bessarabov , D. , Low cost hydrogen production by anion exchange membrane electrolysis: A review . Renew. Sustain. Energy Rev. , 81 , 1690 – 1704 , 2018 . 10.1016/j.rser.2017.05.258 CASWeb of Science®Google Scholar Chi , J. and Yu , H. , Water electrolysis based on renewable energy for hydrogen production . Chin. J. Catal. , 39 , 3 , 390 – 394 , 2018 . 10.1016/S1872-2067(17)62949-8 CASWeb of Science®Google Scholar Vincent , I. , Hydrogen production by water electrolysis with an ultrathin anion-exchange membrane (AEM) . Int. J. Electrochem. Sci. , 13 , 11347 – 11358 , 12, 2018 . 10.20964/2018.12.84 CASWeb of Science®Google Scholar Lim , A. , Kim , H.J. , Henkensmeier , D. , Yoo , S.J. , Kim , J.Y. , Lee , S.Y. , Sung , Y.-E. , Jang , J.H. , Park , H.S. , A study on electrode fabrication and operation variables affecting the performance of anion exchange membrane water electrolysis . J. Ind. Eng. Chem. , 76 , 410 – 418 , 2019 . 10.1016/j.jiec.2019.04.007 CASWeb of Science®Google Scholar Vincent , I. , Lee , E.-C. , Kim , H.-M. , Highly cost-effective platinum-free anion exchange membrane electrolysis for large scale energy storage and hydrogen production . RSC Adv. , 10 , 37429 – 37438 , 2020 . 10.1039/D0RA07190K CASPubMedWeb of Science®Google Scholar Zakaria , Z. and Kamarudin , S.K. , A review of alkaline solid polymer membrane in the application of AEM electrolyzer: Materials and characterization . Int. J. Energy Res. , 45 , 13 , 18337 – 18354 , 2021 . 10.1002/er.6983 CASWeb of Science®Google Scholar Razmjooei , F. , Morawietz , T. , Taghizadeh , E. , Hadjixenophontos , E. , Mues , L. , Gerle , M. , Wood , B.D. , Harms , C. , Gago , A.S. , Ansar , S.A. , Friedrich , K.A. , Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer . Joule , 5 , 7 , 1776 – 1799 , 2021 . 10.1016/j.joule.2021.05.006 CASWeb of Science®Google Scholar Cossar , E. , Barnett , A.O. , Seland , F. , Safari , R. , Botton , G.A. , Baranova , E.A. , Ionomer content optimization in nickel-iron-based anodes with and without ceria for anion exchange membrane water electrolysis . J. Power Sources , 514 , 230563 , 2021 . 10.1016/j.jpowsour.2021.230563 CASWeb of Science®Google Scholar Vincent , I. , Lee , E.-C. , Kim , H.-M. , Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production . Sci. Rep. , 11 , 1 , 1 – 12 , 2021 . 10.1038/s41598-020-80683-6 PubMedWeb of Science®Google Scholar Bhattacharya , R. , Kumari , A. , Bose , D. , Impact of COVID-19 on SDG 6 and integrated approaches for clean water access and sanitation . Sustainability Clim. Change , 15 , 5 , 298 – 306 , 2022 . 10.1089/scc.2022.0040 Google Scholar Leng , Y. , Chen , G. , Mendoza , A.J. , Tighe , T.B. , Hickner , M.A. , Wang , C.Y. , Solid-state water electrolysis with an alkaline membrane . J. Am. Chem. Soc. , 134 , 22 , 9054 – 9057 , 2012 . 10.1021/ja302439z CASPubMedWeb of Science®Google Scholar Pavel , C.C. , Cecconi , F. , Emiliani , C. , Santiccioli , S. , Scaffidi , A. , Catanorchi , S. , Comotti , M. , Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis . Angew. Chem., Int. Ed. , 53 , 5 , 1378 – 1381 , 2014 . 10.1002/anie.201308099 CASPubMedWeb of Science®Google Scholar Lei , C. , Yang , K. , Wang , G. , Wang , G. , Lu , J. , Xiao , L. , Zhuang , L. , Impact of catalyst reconstruction on the durability of anion exchange membrane water electrolysis . ACS Sustain. Chem. Eng. , 10 , 50 , 16725 – 16733 , 2022 . 10.1021/acssuschemeng.2c04855 CASWeb of Science®Google Scholar Dongguo , L. , Motz , A.R. , Bae , C. , Fujimoto , C. , Yang , G. , Zhang , F.Y. , Ayers , K.E. , Kim , Y.S. , Durability of anion exchange membrane water electrolyzers . Energy Environ. Sci. , 14 , 6 , 3393 – 3419 , 2021 . 10.1039/D0EE04086J Web of Science®Google Scholar Park , J.E. , Kang , S.Y. , Oh , S.H. , Kim , J.K. , Lim , M.S. , Ahn , C.Y. , Sung , Y.E. , High-performance anion exchange membrane water electrolysis . Electrochimica Acta , 295 , 99 – 106 , 2019 . 10.1016/j.electacta.2018.10.143 CASWeb of Science®Google Scholar Faraj , M. , Boccia , M. , Miller , H. , Martini , F. , Borsacchi , S. , Geppi , M. , Pucci , A. , New LDPE based anion-exchange membranes for alkaline solid polymeric electrolyte water electrolysis . Int. J. Hydrog. Energy , 37 , 20 , 14992 – 15002 , 2012 . 10.1016/j.ijhydene.2012.08.012 CASWeb of Science®Google Scholar Wang , X. , Li , M. , Golding , B.T. , Sadeghi , M. , Cao , Y. , Yu , E.H. , Scott , K. , A polytetrafluoroethylenequaternary 1, 4-diazabicyclo-[2.2.2]-octane polysulfone composite membrane for alkaline anion exchange membrane fuel cells . Int. J. Hydrog. Energ. , 36 , 16 , 10022 – 10026 , 2011 . 10.1016/j.ijhydene.2011.05.054 CASWeb of Science®Google Scholar Zeng , Q.H. , Liu , Q.L. , Broadwell , I. , Zhu , A.M. , Xiong , Y. , Tu , X.P. , Anion exchange membranes based on quaternized polystyrene-block-poly (ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells . J. Membr. Sci. , 349 , 1–2 , 237 – 243 , 2010 . 10.1016/j.memsci.2009.11.051 CASWeb of Science®Google Scholar Seetharaman , S. , Balaji , R. , Ramya , K. , Dhathathreyan , K.S. , Velan , M. , Graphene oxide modified non-noble metal electrode for alkaline anion exchange membrane water electrolyzers . Int. J. Hydrog. Energ. , 38 , 35 , 14934 – 14942 , 2013 . 10.1016/j.ijhydene.2013.09.033 CASWeb of Science®Google Scholar Joe , J.D. , Kumar , D.S. , Sivakumar , P. , Production of hydrogen by anion exchange membrane using AWE . Int. J. Sci. Technol. Res. , 3 , 38 – 42 , 2014 . Google Scholar Pandiarajan , T. , Berchmans , L.J. , Ravichandran , S. , Fabrication of spinel ferrite based alkaline anion exchange membrane water electrolysers for hydrogen production . RSC Adv. , 5 , 43 , 34100 – 34108 , 2015 . 10.1039/C5RA01123J CASWeb of Science®Google Scholar Clean and Renewable Energy Production ReferencesRelatedInformation