Exploring the potential of artificial intelligence tools in enhancing the performance of an inline pipe turbine

涡轮机 计算流体力学 尾水管 套管 水力发电 人工神经网络 海洋工程 航程(航空) 发电 计算机科学 工程类 机械工程 功率(物理) 模拟 人工智能 电气工程 航空航天工程 物理 量子力学
作者
Kutay Çelebioğlu,Ece Aylı,Huseyin Cetinturk,Yiğit Taşcıoğlu,Selin Aradağ
标识
DOI:10.1177/09544089231224324
摘要

In this study, investigations were conducted using computational fluid dynamics (CFD) to assess the applicability of a Francis-type water turbine within a pipe. The objective of the study is to determine the feasibility of implementing a turbine within a pipe and enhance its performance values within the operating range. The turbine within the pipe occupies significantly less space in hydroelectric power plants since a spiral casing is not used to distribute the flow to stationary vanes. Consequently, production and assembly costs can be reduced. Hence, there is a broad scope for application, particularly in small and medium-scale hydroelectric power plants. According to the results, the efficiency value increases on average by approximately 1.5% compared to conventional design, and it operates with higher efficiencies over a wider flow rate range. In the second part of the study, machine learning was employed for the efficiency prediction of an inline-type turbine. An appropriate Artificial Neural Network (ANN) architecture was initially obtained, with the Bayesian Regularization training algorithm proving to be the best approach for this type of problem. When the suitable ANN architecture was utilized, the prediction was found to be in good agreement with CFD, with an root mean squared error value of 0.194. An R 2 value of 0.99631 was achieved with the appropriate ANN architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
寒冷的如之完成签到 ,获得积分10
1秒前
刘齐完成签到,获得积分10
1秒前
ilihe应助雪山飞龙采纳,获得10
1秒前
甜甜的以筠完成签到 ,获得积分10
2秒前
嗯嗯应助Index采纳,获得10
2秒前
李周关注了科研通微信公众号
4秒前
zhl完成签到,获得积分10
5秒前
英姑应助一个小胖子采纳,获得10
5秒前
5秒前
carly完成签到 ,获得积分10
6秒前
玺月洛离完成签到,获得积分10
6秒前
忧伤的觅珍完成签到,获得积分10
6秒前
含蓄听南完成签到 ,获得积分10
7秒前
puppynorio完成签到,获得积分10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
七龙珠完成签到,获得积分10
9秒前
LWJ完成签到 ,获得积分10
9秒前
xinyuDuan完成签到,获得积分10
9秒前
Jason完成签到,获得积分10
10秒前
游若发布了新的文献求助10
11秒前
大个应助刘以宁采纳,获得10
11秒前
RayLam完成签到,获得积分10
11秒前
12秒前
hhhhhha完成签到,获得积分10
13秒前
xdc发布了新的文献求助10
14秒前
Dr.Lee完成签到 ,获得积分10
14秒前
hahaha完成签到,获得积分10
14秒前
lilei完成签到,获得积分10
14秒前
克偃统统完成签到,获得积分10
15秒前
烂漫的蜡烛完成签到 ,获得积分10
15秒前
wangyaofeng完成签到,获得积分10
16秒前
16秒前
金金睿完成签到 ,获得积分10
17秒前
xurui_s完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
yyy完成签到 ,获得积分10
19秒前
星川完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131