高光谱成像
太赫兹辐射
主成分分析
样品(材料)
化学成像
振幅
传输(电信)
光学
光谱特征
计算机科学
太赫兹光谱与技术
材料科学
相(物质)
模式识别(心理学)
遥感
人工智能
物理
电信
地质学
热力学
量子力学
作者
Margaret E. Granger,Alexa Urrea,Dallin T. Arnold,Alessandra B. Hoopes,Jeremy A. Johnson
出处
期刊:ACS Photonics
[American Chemical Society]
日期:2024-01-11
卷期号:11 (2): 745-751
标识
DOI:10.1021/acsphotonics.3c01627
摘要
We developed a method to analyze sample composition via hyperspectral imaging with terahertz time-domain spectroscopy (THz-TDS). Historically, THz spectral amplitude data alone have been most often used for hyperspectral analysis. We show advantages of simultaneously using both the amplitude and phase angle components of the THz transmission data in the analysis. Use of the complex transmission data improves the integrity of the sample component differentiation with respect to the sample composition. We incorporate principal component analysis and other simple machine learning algorithms into our data analysis methodology to automate the process of interpreting hyperspectral data and isolating unique components. As a demonstration, we automatically distinguish the structure of both a split-ring resonator and a sugar pellet sample.
科研通智能强力驱动
Strongly Powered by AbleSci AI