A sequence‐based model for identifying proteins undergoing liquid–liquid phase separation/forming fibril aggregates via machine learning

纤维 序列(生物学) 随机森林 淀粉样纤维 特征(语言学) 骨料(复合) 化学 生物物理学 计算生物学 生物系统 材料科学 计算机科学 人工智能 生物化学 淀粉样β 纳米技术 病理 医学 生物 语言学 哲学 疾病
作者
Shaofeng Liao,Yujun Zhang,Xinchen Han,Tinglan Wang,Xi Wang,Qinglin Yan,Qian Li,Yifei Qi,Zhuqing Zhang
出处
期刊:Protein Science [Wiley]
卷期号:33 (3) 被引量:1
标识
DOI:10.1002/pro.4927
摘要

Abstract Liquid–liquid phase separation (LLPS) and the solid aggregate (also referred to as amyloid aggregates) formation of proteins, have gained significant attention in recent years due to their associations with various physiological and pathological processes in living organisms. The systematic investigation of the differences and connections between proteins undergoing LLPS and those forming amyloid fibrils at the sequence level has not yet been explored. In this research, we aim to address this gap by comparing the two types of proteins across 36 features using collected data available currently. The statistical comparison results indicate that, 24 of the selected 36 features exhibit significant difference between the two protein groups. A LLPS‐Fibrils binary classification model built on these 24 features using random forest reveals that the fraction of intrinsically disordered residues (F IDR ) is identified as the most crucial feature. While, in the further three‐class LLPS‐Fibrils‐Background classification model built on the same screened features, the composition of cysteine and that of leucine show more significant contributions than others. Through feature ablation analysis, we finally constructed a model FLFB (Feature‐based LLPS‐Fibrils‐Background protein predictor) using six refined features, with an average area under the receiver operating characteristics of 0.83. This work indicates using sequence features and a machine learning model, proteins undergoing LLPS or forming amyloid fibrils can be identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大大怪发布了新的文献求助10
刚刚
寂寞致幻完成签到,获得积分20
刚刚
量子星尘发布了新的文献求助10
1秒前
高高完成签到 ,获得积分10
2秒前
JoshuaChen发布了新的文献求助10
2秒前
ww完成签到,获得积分10
2秒前
CodeCraft应助宋晓静采纳,获得10
2秒前
就瞅你发布了新的文献求助10
3秒前
orixero应助uilyang采纳,获得30
3秒前
xidongdong关注了科研通微信公众号
3秒前
kang完成签到,获得积分10
3秒前
李健应助毛子涵采纳,获得10
3秒前
天天快乐应助笑点低的不采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
yian007完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
JasonSun完成签到,获得积分10
8秒前
8秒前
SciGPT应助缓慢易云采纳,获得10
9秒前
xuxu发布了新的文献求助20
9秒前
9秒前
9秒前
侯美琪完成签到 ,获得积分10
9秒前
10秒前
10秒前
苹果发布了新的文献求助10
10秒前
12334发布了新的文献求助10
10秒前
ww发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
大个应助渊_采纳,获得10
11秒前
11秒前
RockRedfoo完成签到 ,获得积分10
11秒前
scvsdz发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582