A sequence‐based model for identifying proteins undergoing liquid–liquid phase separation/forming fibril aggregates via machine learning

纤维 序列(生物学) 随机森林 淀粉样纤维 特征(语言学) 骨料(复合) 化学 生物物理学 计算生物学 生物系统 材料科学 计算机科学 人工智能 生物化学 淀粉样β 纳米技术 病理 医学 生物 哲学 疾病 语言学
作者
Shaofeng Liao,Yujun Zhang,Xinchen Han,Tinglan Wang,Xi Wang,Qinglin Yan,Qian Li,Yifei Qi,Zhuqing Zhang
出处
期刊:Protein Science [Wiley]
卷期号:33 (3) 被引量:1
标识
DOI:10.1002/pro.4927
摘要

Abstract Liquid–liquid phase separation (LLPS) and the solid aggregate (also referred to as amyloid aggregates) formation of proteins, have gained significant attention in recent years due to their associations with various physiological and pathological processes in living organisms. The systematic investigation of the differences and connections between proteins undergoing LLPS and those forming amyloid fibrils at the sequence level has not yet been explored. In this research, we aim to address this gap by comparing the two types of proteins across 36 features using collected data available currently. The statistical comparison results indicate that, 24 of the selected 36 features exhibit significant difference between the two protein groups. A LLPS‐Fibrils binary classification model built on these 24 features using random forest reveals that the fraction of intrinsically disordered residues (F IDR ) is identified as the most crucial feature. While, in the further three‐class LLPS‐Fibrils‐Background classification model built on the same screened features, the composition of cysteine and that of leucine show more significant contributions than others. Through feature ablation analysis, we finally constructed a model FLFB (Feature‐based LLPS‐Fibrils‐Background protein predictor) using six refined features, with an average area under the receiver operating characteristics of 0.83. This work indicates using sequence features and a machine learning model, proteins undergoing LLPS or forming amyloid fibrils can be identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子发布了新的文献求助20
1秒前
2秒前
sqw发布了新的文献求助10
5秒前
douzi完成签到,获得积分10
5秒前
猴子好坏完成签到,获得积分10
6秒前
小马不爱学习完成签到,获得积分10
6秒前
7秒前
mukji发布了新的文献求助10
8秒前
山外山完成签到,获得积分10
9秒前
logan完成签到,获得积分10
10秒前
顾欢欢完成签到 ,获得积分10
11秒前
苦瓜女生发布了新的文献求助10
13秒前
14秒前
清脆香露完成签到,获得积分10
14秒前
赘婿应助小远远采纳,获得10
14秒前
领导范儿应助软土豆丝采纳,获得10
15秒前
Skyrin完成签到,获得积分0
15秒前
Orange应助无限毛豆采纳,获得10
16秒前
biyeshunli完成签到,获得积分20
17秒前
18秒前
芳芳子呀完成签到,获得积分10
18秒前
Akim应助子云采纳,获得10
20秒前
paul完成签到,获得积分10
20秒前
123lx完成签到,获得积分10
20秒前
23秒前
77发布了新的文献求助10
23秒前
24秒前
star完成签到 ,获得积分10
24秒前
25秒前
sjw525完成签到,获得积分10
26秒前
威武白桃完成签到,获得积分10
27秒前
27秒前
科研小白完成签到,获得积分10
27秒前
gqp完成签到,获得积分10
28秒前
无限毛豆发布了新的文献求助10
29秒前
眼睛大的傲菡完成签到,获得积分10
29秒前
科研豪97发布了新的文献求助10
29秒前
软土豆丝发布了新的文献求助10
32秒前
Lucas应助YULIA采纳,获得30
40秒前
4444小熊完成签到 ,获得积分10
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671625
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779625
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610180
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093