DTC: Deep Tracking Control

稳健性(进化) 计算机科学 人工智能 规划师 地形 强化学习 机器学习 轨迹优化 运动规划 机器人 最优控制 数学优化 数学 生物 生态学 基因 生物化学 化学
作者
Fabian Jenelten,Junjian He,Farbod Farshidian,Marco Hutter
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:9 (86) 被引量:1
标识
DOI:10.1126/scirobotics.adh5401
摘要

Legged locomotion is a complex control problem that requires both accuracy and robustness to cope with real-world challenges. Legged systems have traditionally been controlled using trajectory optimization with inverse dynamics. Such hierarchical model-based methods are appealing because of intuitive cost function tuning, accurate planning, generalization, and, most importantly, the insightful understanding gained from more than one decade of extensive research. However, model mismatch and violation of assumptions are common sources of faulty operation. Simulation-based reinforcement learning, on the other hand, results in locomotion policies with unprecedented robustness and recovery skills. Yet, all learning algorithms struggle with sparse rewards emerging from environments where valid footholds are rare, such as gaps or stepping stones. In this work, we propose a hybrid control architecture that combines the advantages of both worlds to simultaneously achieve greater robustness, foot-placement accuracy, and terrain generalization. Our approach uses a model-based planner to roll out a reference motion during training. A deep neural network policy is trained in simulation, aiming to track the optimized footholds. We evaluated the accuracy of our locomotion pipeline on sparse terrains, where pure data-driven methods are prone to fail. Furthermore, we demonstrate superior robustness in the presence of slippery or deformable ground when compared with model-based counterparts. Last, we show that our proposed tracking controller generalizes across different trajectory optimization methods not seen during training. In conclusion, our work unites the predictive capabilities and optimality guarantees of online planning with the inherent robustness attributed to offline learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdzsx完成签到,获得积分10
1秒前
2秒前
Beton_X完成签到,获得积分20
2秒前
拼搏蜗牛发布了新的文献求助10
3秒前
3秒前
LZHWSND发布了新的文献求助10
3秒前
可爱的函函应助Hannah17采纳,获得10
4秒前
杭璎完成签到,获得积分10
4秒前
6秒前
hyeseongu完成签到,获得积分20
7秒前
香蕉觅云应助学术蝗虫采纳,获得10
7秒前
lyn_zhou完成签到,获得积分10
8秒前
科研通AI2S应助abcdulla777采纳,获得10
9秒前
桂子完成签到,获得积分10
10秒前
111完成签到,获得积分10
10秒前
天易发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
12秒前
12秒前
华仔应助从容的白容采纳,获得10
13秒前
13秒前
hyeseongu发布了新的文献求助50
13秒前
carpsz完成签到,获得积分10
13秒前
沉静的熊猫完成签到,获得积分10
14秒前
潇潇完成签到 ,获得积分10
14秒前
Hannah17完成签到,获得积分20
14秒前
穆紫应助qqq采纳,获得10
15秒前
16秒前
研友_nxVrd8发布了新的文献求助10
16秒前
自然发布了新的文献求助10
16秒前
16秒前
Carmen完成签到,获得积分10
16秒前
17秒前
LZHWSND发布了新的文献求助10
17秒前
carpsz发布了新的文献求助10
17秒前
Hannah17发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124857
求助须知:如何正确求助?哪些是违规求助? 2775196
关于积分的说明 7725657
捐赠科研通 2430668
什么是DOI,文献DOI怎么找? 1291358
科研通“疑难数据库(出版商)”最低求助积分说明 622123
版权声明 600328