Dust deposition on the photovoltaic panel: A comprehensive survey on mechanisms, effects, mathematical modeling, cleaning methods, and monitoring systems

光伏系统 计算机科学 工艺工程 环境科学 自动汇总 汽车工程 工程类 人工智能 电气工程
作者
Letao Wan,Liqian Zhao,Wensheng Xu,Feihong Guo,Xiaoxiang Jiang
出处
期刊:Solar Energy [Elsevier]
卷期号:268: 112300-112300 被引量:12
标识
DOI:10.1016/j.solener.2023.112300
摘要

Photovoltaic (PV) power generation has become one of the key technologies to reach energy-saving and carbon reduction targets. However, dust accumulation will significantly affect the electrical, optical, and thermal performance of PV panels and cause some energy loss. For this reason, appropriate cleaning measures are needed to restore their performance and power output. Many researchers have reviewed the effects of dust on the performance of PV panels and cleaning methods, but their coverage is narrow and lacks more in-depth summarization, comparison, and critique of key quantitative results. Using the Web of Science database as the main search source, this paper provides a comprehensive overview of research results on the mechanisms and influencing factors of dust deposition on photovoltaic panels, photovoltaic performance loss and prediction models, cleaning methods, and dirt monitoring systems. The results found that the module power output degradation due to dust deposition is more serious in different regions, ranging from 7% to 98.13%. The automatic cleaning robot, as an emerging intelligent technology, has a better cleaning effect and can increase PV efficiency by up to 49.53%. This paper also proposes a comprehensive strategy for dust prevention on PV panels that integrates "real-time monitoring of dust accumulation - model prediction of losses - and optimization of cleaning solutions", emphasises the development of new intelligent cleaning methods represented by robots and drone cleaning, and suggests promoting the application of AI in the monitoring and cleaning of PV modules to accelerate the process of achieving carbon neutrality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助黄瓜橙橙采纳,获得10
1秒前
1秒前
猩猩发布了新的文献求助10
2秒前
2秒前
3秒前
踏实口红发布了新的文献求助10
3秒前
懵懂的梦秋应助nemo采纳,获得10
3秒前
四斤瓜完成签到 ,获得积分10
4秒前
4秒前
勤奋冷亦给勤奋冷亦的求助进行了留言
5秒前
5秒前
萧水白应助黑色的小白虫采纳,获得10
5秒前
5秒前
茼蒿完成签到,获得积分20
5秒前
superxiao应助yang采纳,获得10
5秒前
AIMS完成签到,获得积分0
6秒前
小蚊子发布了新的文献求助10
7秒前
稳重紫蓝完成签到 ,获得积分10
7秒前
Lsy发布了新的文献求助10
7秒前
珂伟完成签到,获得积分10
8秒前
dspan发布了新的文献求助10
8秒前
8秒前
多多发布了新的文献求助30
9秒前
笃定发布了新的文献求助10
10秒前
11秒前
踏实口红完成签到,获得积分10
11秒前
12秒前
传奇3应助隐形的巴豆采纳,获得10
14秒前
YYX608发布了新的文献求助10
14秒前
由富完成签到,获得积分20
15秒前
云瑾应助柔弱山芙采纳,获得10
15秒前
大白完成签到,获得积分10
17秒前
明理萃完成签到 ,获得积分10
18秒前
18秒前
七里香发布了新的文献求助10
18秒前
18秒前
赘婿应助大漠孤烟采纳,获得10
18秒前
18秒前
attilio发布了新的文献求助10
19秒前
big ben完成签到 ,获得积分10
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168119
求助须知:如何正确求助?哪些是违规求助? 2819492
关于积分的说明 7926815
捐赠科研通 2479378
什么是DOI,文献DOI怎么找? 1320762
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458