Multi-vehicle trajectory prediction and control at intersections using state and intention information

弹道 计算机科学 国家(计算机科学) 控制(管理) 状态信息 人工智能 机器学习 算法 天文 物理
作者
Dekai Zhu,Qadeer Khan,Daniel Cremers
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:574: 127220-127220 被引量:4
标识
DOI:10.1016/j.neucom.2023.127220
摘要

Traditional deep learning approaches for prediction of future trajectory of multiple road agents rely on knowing information about their past trajectory. In contrast, this work utilizes information of only the current state and intended direction to predict the future trajectory of multiple vehicles at intersections. Incorporating intention information has two distinct advantages: (1) It allows to not just predict the future trajectory but also control the multiple vehicles. (2) By manipulating the intention, the interaction among the vehicles is adapted accordingly to achieve desired behavior. Both these advantages would otherwise not be possible using only past trajectory information Our model utilizes message passing of information between the vehicle nodes for a more holistic overview of the environment, resulting in better trajectory prediction and control of the vehicles. This work also provides a thorough investigation and discussion into the disparity between offline and online metrics for the task of multi-agent control. We particularly show why conducting only offline evaluation would not suffice, thereby necessitating online evaluation. We demonstrate the superiority of utilizing intention information rather than past trajectory in online scenarios. Lastly, we show the capability of our method in adapting to different domains through experiments conducted on two distinct simulation platforms i.e. SUMO and CARLA. The code for this work can be found on the project page here: https://dekai21.github.io/Multi_Agent_Intersection/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯先森ya发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
Jonathan完成签到,获得积分10
7秒前
wsj发布了新的文献求助10
8秒前
9秒前
整齐小松鼠应助wsj采纳,获得10
13秒前
13秒前
14秒前
14秒前
17秒前
17秒前
17秒前
18秒前
Owen应助超速也文章采纳,获得10
19秒前
张雯思发布了新的文献求助10
21秒前
清爽尔安发布了新的文献求助10
21秒前
22秒前
孙燕应助幸福大白采纳,获得30
22秒前
香香应助研友_Zzrx6Z采纳,获得10
22秒前
24秒前
25秒前
25秒前
从容的柜子完成签到 ,获得积分10
26秒前
26秒前
木可发布了新的文献求助10
27秒前
清爽尔安完成签到,获得积分10
28秒前
Komorebi完成签到 ,获得积分10
28秒前
qqq发布了新的文献求助10
28秒前
所所应助独特乘云采纳,获得10
29秒前
30秒前
31秒前
小蘑菇应助发疯的草莓采纳,获得10
32秒前
小绵羊发布了新的文献求助10
33秒前
八卦巧克力完成签到,获得积分10
33秒前
lzw发布了新的文献求助10
34秒前
iNk应助wodetaiyangLLL采纳,获得10
37秒前
38秒前
帆帆完成签到,获得积分10
38秒前
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174