Multi-vehicle trajectory prediction and control at intersections using state and intention information

弹道 计算机科学 国家(计算机科学) 控制(管理) 状态信息 人工智能 机器学习 算法 物理 天文
作者
Dekai Zhu,Qadeer Khan,Daniel Cremers
出处
期刊:Neurocomputing [Elsevier]
卷期号:574: 127220-127220 被引量:4
标识
DOI:10.1016/j.neucom.2023.127220
摘要

Traditional deep learning approaches for prediction of future trajectory of multiple road agents rely on knowing information about their past trajectory. In contrast, this work utilizes information of only the current state and intended direction to predict the future trajectory of multiple vehicles at intersections. Incorporating intention information has two distinct advantages: (1) It allows to not just predict the future trajectory but also control the multiple vehicles. (2) By manipulating the intention, the interaction among the vehicles is adapted accordingly to achieve desired behavior. Both these advantages would otherwise not be possible using only past trajectory information Our model utilizes message passing of information between the vehicle nodes for a more holistic overview of the environment, resulting in better trajectory prediction and control of the vehicles. This work also provides a thorough investigation and discussion into the disparity between offline and online metrics for the task of multi-agent control. We particularly show why conducting only offline evaluation would not suffice, thereby necessitating online evaluation. We demonstrate the superiority of utilizing intention information rather than past trajectory in online scenarios. Lastly, we show the capability of our method in adapting to different domains through experiments conducted on two distinct simulation platforms i.e. SUMO and CARLA. The code for this work can be found on the project page here: https://dekai21.github.io/Multi_Agent_Intersection/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助张三采纳,获得10
刚刚
俏皮的鱼完成签到,获得积分10
刚刚
打打应助怪尾巴采纳,获得10
刚刚
哈尼完成签到,获得积分10
刚刚
斯文败类应助cc采纳,获得10
刚刚
温暖向南发布了新的文献求助20
1秒前
大个应助不吃晚饭采纳,获得10
2秒前
思源应助flter采纳,获得30
2秒前
Yuki酱完成签到 ,获得积分10
2秒前
所所应助zzz采纳,获得10
2秒前
科目三应助温暖的文博采纳,获得10
2秒前
Deadman完成签到,获得积分10
3秒前
4秒前
科研通AI6应助蓝天白云采纳,获得10
5秒前
5秒前
5秒前
天天快乐应助nnnnnnxh采纳,获得10
7秒前
我心飞翔完成签到 ,获得积分10
7秒前
Cml完成签到,获得积分10
7秒前
明芬发布了新的文献求助10
7秒前
大脚仙发布了新的文献求助10
8秒前
哈基米德举报酷酷的盼海求助涉嫌违规
8秒前
9秒前
llzz完成签到,获得积分10
9秒前
科研通AI6应助ZsJJkk采纳,获得20
9秒前
styrene应助mfcare采纳,获得10
10秒前
打打应助安琪采纳,获得30
10秒前
田様应助陶醉鞅采纳,获得10
10秒前
隐形曼青应助Xiao采纳,获得10
11秒前
12秒前
不吃晚饭完成签到,获得积分10
12秒前
缓慢手机完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
领导范儿应助莽哥采纳,获得10
13秒前
哎哟我去完成签到,获得积分10
13秒前
自觉博超完成签到,获得积分10
13秒前
爆米花应助香蕉雅香采纳,获得10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406