An innovative method for predicting oxidation reaction rate constants by extracting vital information of organic contaminants (OCs) based on diverse molecular representations

化学 电负性 极化率 反应速率常数 分子描述符 分子 反应机理 降级(电信) 生物系统 透视图(图形) 计算化学 有机化学 人工智能 数量结构-活动关系 计算机科学 立体化学 动力学 物理 生物 电信 催化作用 量子力学
作者
Tengyi Zhu,Yan Yu,Ming Chen,Zhiyuan Zong,Cuicui Tao
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:12 (2): 112473-112473 被引量:2
标识
DOI:10.1016/j.jece.2024.112473
摘要

The reaction rate constant (k) of oxidants with organic contaminants (OCs) is an important parameter to assess the efficiency of oxidants in removing contaminants. In this study, the degradation of OCs in three oxidation systems was evaluated. The modeling process applied three molecule representations (molecular descriptors (MD), quantum chemical descriptors (QCD) and MACCS fingerprints) and their variable integrations. Models based on integration molecule representations show significant performance improvements. Eventually, the optimal models for ozone, chlorine dioxide and hypochlorite were found to be (MD+QCD)-XGBoost (R2tra = 0.982, Q2tra = 0.715), (MD+QCD+MACCS)-XGBoost (R2tra = 0.982, Q2tra = 0.778), and (MD+QCD+MACCS)-CatBoost (R2tra = 0.856, Q2tra = 0.709) model, respectively. Here, we introduced a new perspective that differed from focusing on machine learning (ML) algorithm optimization. This perspective centered on the input variables (i.e., molecular representations) of models to improve model performance by capturing the key properties of OCs comprehensively. Furthermore, the key effects of pH, ionization potential, orbital energy, polarizability and electronegativity on the oxidation reaction in different oxidation systems were clarified. We hope that the mechanism explanation in this study can provide valuable insights for understanding the mechanism of various oxidation reactions of complex OCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
包容的水彤关注了科研通微信公众号
1秒前
1秒前
1秒前
受伤秋烟完成签到,获得积分10
2秒前
自然的芷蝶应助JiaYY采纳,获得20
2秒前
2秒前
lizhen完成签到,获得积分10
2秒前
烂漫的新竹完成签到,获得积分10
2秒前
香蕉觅云应助阔达的扬采纳,获得10
2秒前
dog发布了新的文献求助10
2秒前
犹豫发布了新的文献求助10
2秒前
小杭76发布了新的文献求助10
2秒前
2秒前
柚子发布了新的文献求助10
3秒前
健壮荧完成签到,获得积分10
3秒前
小嘀嗒发布了新的文献求助10
3秒前
一只啾咪完成签到,获得积分10
3秒前
亭语完成签到 ,获得积分0
3秒前
3秒前
科研通AI2S应助牛牛采纳,获得10
4秒前
天行马发布了新的文献求助10
4秒前
宝小静发布了新的文献求助10
4秒前
852应助石问丝采纳,获得10
4秒前
johnzsin发布了新的文献求助10
4秒前
li关闭了li文献求助
5秒前
凉虾完成签到,获得积分10
5秒前
孔雀翎发布了新的文献求助10
5秒前
吴灵发布了新的文献求助10
5秒前
赵珂完成签到,获得积分10
5秒前
所所应助三十三采纳,获得10
6秒前
CodeCraft应助kersville采纳,获得10
7秒前
231完成签到 ,获得积分10
7秒前
彩色鸿涛完成签到,获得积分10
7秒前
7秒前
玥越发布了新的文献求助10
7秒前
7秒前
8秒前
上官若男应助落后立果采纳,获得30
9秒前
风之子发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477776
求助须知:如何正确求助?哪些是违规求助? 4579563
关于积分的说明 14369317
捐赠科研通 4507785
什么是DOI,文献DOI怎么找? 2470190
邀请新用户注册赠送积分活动 1457093
关于科研通互助平台的介绍 1431066