Supramolecular Design and Assembly Engineering toward High-Performance Organic Field-Effect Transistors

超分子化学 数码产品 纳米技术 有机半导体 材料科学 晶体管 有机电子学 范德瓦尔斯力 分子间力 有机场效应晶体管 场效应晶体管 分子 光电子学 化学 电气工程 工程类 电压 有机化学
作者
Mingliang Li,Michael Rogatch,Hongliang Chen,Xuefeng Guo,Jinyao Tang
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (4): 505-517 被引量:1
标识
DOI:10.1021/accountsmr.4c00009
摘要

ConspectusSupramolecular assembly describes the dynamic processes in which molecules of a system organize themselves into ordered patterns or structures through noncovalent interactions. Among these systems, single-crystalline organic semiconductors (OSCs) in electronic devices, such as organic field-effect transistors (OFETs), represent a class of semiconductive molecules that can form regular lattices. These organic nature of these OSCs allows for precise design of the superstructure and compact arrangement through intermolecular interactions, such as [π···π], van der Waals, and polarity–polarity interactions. As a result, they exhibit exceptional carrier mobilities and stability in solid-state aggregations, making them ideal for electronics research and production. However, it is important to note that defects and disorders are unavoidable in spontaneous and rapid supramolecular assembly processes. They will hinder charge-carrier transport as scattering sites and thus impair device performance. On the other hand, by utilizing different processing methods, OSCs can be prepared into variant aggregated forms, such as amorphous, liquid-crystalline, or single-crystalline films. The performance of devices that use these materials relies heavily on the specific properties of the assembled components. Therefore, the regulation of supramolecular assembly in solid aggregations is necessary to achieve high-performance devices as well as scaled electronic production with controllable cost, particularly in emerging fields, such as flexible electronics, wearable devices, and low-cost sensors. Currently, researchers are actively exploring the fundamental mechanism to regulate and enhance the performance of OSC aggregations as well as developing novel materials that broaden their potential applications. However, investigation on mechanisms and functions pertaining to molecule-level arrangements in solid-state OSCs remains underdeveloped, necessitating in-depth investigation and summarization.In this Account, we first provide an overview and analysis of the supramolecular assembly process and the underlying mechanisms, focusing on three key dimensions, i.e., (i) molecular design, (ii) intermolecular interaction, and (iii) macroscopic morphology control. Then, we highlight our research on the morphology regulation and optimization of OSC films. Three strategies have been summarized and discussed to achieve high-quality OSCs and high-performance OFETs. These include: (i) molecular engineering of OSCs to install supramolecular assembly properties, (ii) thermal annealing optimization on OSCs films to increase crystallinity, and (iii) strain engineering processing on OSCs to install device functionalization. Their design rationales for target applications were analyzed. By deliberation on these issues, the fundamental underpinnings of material investigation are elucidated, thereby affording readers a comprehensive survey of the methodologies and strategies employed in the realm of single-crystalline semiconductors. To conclude, the main challenges and future perspectives toward the forthcoming development and commercialization of high-performance functional OFETs are discussed to inspire more novel material designs and regulation methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Never stall完成签到,获得积分10
1秒前
鱼啦啦完成签到,获得积分10
1秒前
1秒前
猫了个喵完成签到,获得积分10
2秒前
冷静的嫣然完成签到 ,获得积分10
2秒前
2秒前
小值钱完成签到,获得积分10
3秒前
研友_nPPERn发布了新的文献求助10
4秒前
我要瘦发布了新的文献求助10
4秒前
solobang发布了新的文献求助10
4秒前
Sean发布了新的文献求助10
4秒前
Harry完成签到,获得积分10
5秒前
yxy999完成签到,获得积分10
5秒前
年华发布了新的文献求助10
5秒前
WZH123456完成签到,获得积分10
6秒前
orixero应助大胆盼兰采纳,获得10
6秒前
7秒前
7秒前
陈某某完成签到,获得积分10
7秒前
卡皮巴丘完成签到 ,获得积分10
8秒前
周少完成签到,获得积分10
8秒前
陶一二完成签到,获得积分10
10秒前
10秒前
10秒前
DocZhao完成签到 ,获得积分10
11秒前
apt完成签到,获得积分10
11秒前
11秒前
Three完成签到,获得积分10
12秒前
如果多年后完成签到 ,获得积分10
12秒前
SYLH应助solobang采纳,获得10
13秒前
SYLH应助solobang采纳,获得10
13秒前
灰色与青完成签到,获得积分10
13秒前
852应助幸福胡萝卜采纳,获得10
13秒前
虞无声应助年华采纳,获得10
13秒前
14秒前
香菜发布了新的文献求助10
15秒前
hf发布了新的文献求助10
15秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678