湍流
波数
职位(财务)
插值(计算机图形学)
各向同性
粒子(生态学)
网格
物理
统计物理学
均匀各向同性湍流
人工神经网络
计算物理学
机械
数学
经典力学
地质学
计算机科学
几何学
光学
直接数值模拟
运动(物理)
人工智能
海洋学
财务
雷诺数
经济
作者
Jiajun Hu,Zhen Lu,Yue Yang
出处
期刊:Physical review fluids
[American Physical Society]
日期:2024-03-13
卷期号:9 (3)
被引量:1
标识
DOI:10.1103/physrevfluids.9.034606
摘要
A neural-network interpolation (NNI) is proposed to improve the prediction of preferential concentration in particle-laden turbulence. The NNI uses the particle position and velocity on neighboring grid points to estimate the fluid velocity at the particle position. To evaluate the NNI, we simulate a two-dimensional homogeneous isotropic turbulence subjected to high-wavenumber forcing. The NNI recovers the effect of small-scale motion on particle distribution from the low-resolution field, adding high-wavenumber energy to the turbulence field. Consequently, the NNI improves the prediction accuracy of the preferential concentration on coarse grids.
科研通智能强力驱动
Strongly Powered by AbleSci AI