Stochastic Non-Autoregressive Transformer-Based Multi-Modal Pedestrian Trajectory Prediction for Intelligent Vehicles

计算机科学 自回归模型 推论 行人 弹道 机器学习 人工智能 情态动词 数据挖掘 工程类 数学 计量经济学 化学 物理 天文 运输工程 高分子化学
作者
Xiaobo Chen,Huanjia Zhang,Fuwen Deng,Jun Liang,Jian Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 3561-3574
标识
DOI:10.1109/tits.2023.3342040
摘要

Pedestrian trajectory prediction, which aims at predicting the future positions of all pedestrians in a crowd scene given their past trajectories, is the cornerstone of autonomous driving and intelligent transportation systems. Accurate prediction and fast inference are both indispensable for real-world applications. In this paper, we propose a stochastic non-autoregressive Transformer-based multi-modal trajectory prediction model to address the two challenges. Specifically, a novel graph attention module dedicated to joint learning of social and temporal interaction is proposed to explore the complex interaction among pedestrians while integrating sparse attention mechanism, pedestrian identity, and temporal order contained in the trajectory data. By doing so, the interaction across temporal and social dimensions can be simultaneously processed to extract abundant context features for prediction. Besides, to accelerate inference speed, we put forward a stochastic non-autoregressive Transformer model with multi-modal prediction capability where each future trajectory can be inferred in a parallel fashion, therefore, resulting in diverse trajectory predictions and less computational cost. Extensive experiments and ablation studies are performed to evaluate our approach. The empirical results demonstrate that the proposed model not only produces high prediction accuracy but also infers with fast speed. The code of the proposed method will be publicly available at https://github.com/xbchen82/SNARTF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lve发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
Hui_2023发布了新的文献求助10
2秒前
hhh完成签到,获得积分10
2秒前
2秒前
3秒前
mmgf发布了新的文献求助10
3秒前
Ava应助覃小冬采纳,获得10
3秒前
斯文败类应助鹿芗泽采纳,获得30
3秒前
zz关闭了zz文献求助
3秒前
安安发布了新的文献求助10
3秒前
rrrrrrry发布了新的文献求助10
4秒前
千島雪穂发布了新的文献求助10
5秒前
顾矜应助欢呼的灰狼采纳,获得10
5秒前
包容仙人掌完成签到,获得积分10
5秒前
小马甲应助hj采纳,获得10
6秒前
我是老大应助映城采纳,获得50
6秒前
6秒前
7秒前
8秒前
研友_VZG7GZ应助玄一采纳,获得10
9秒前
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
myx完成签到 ,获得积分10
13秒前
早八混子完成签到,获得积分10
13秒前
111发布了新的文献求助10
14秒前
明芬发布了新的文献求助10
14秒前
qq完成签到,获得积分10
14秒前
无花果应助BW打工仔采纳,获得10
14秒前
Lucas应助yoyo采纳,获得10
15秒前
橙子发布了新的文献求助10
15秒前
追风少年发布了新的文献求助10
15秒前
16秒前
CipherSage应助BENRONG采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594565
求助须知:如何正确求助?哪些是违规求助? 4680238
关于积分的说明 14813737
捐赠科研通 4647610
什么是DOI,文献DOI怎么找? 2535063
邀请新用户注册赠送积分活动 1503074
关于科研通互助平台的介绍 1469521