Soil Organic Matter Estimation Modeling Using Fractal Feature of Soil for vis-NIR Hyperspectral Imaging

高光谱成像 主成分分析 分形 随机森林 模式识别(心理学) 支持向量机 赫斯特指数 土壤有机质 人工智能 多重分形系统 生物系统 遥感 计算机科学 人工神经网络 数学 环境科学 土壤科学 地质学 统计 土壤水分 数学分析 生物
作者
Shaofang He,Qing Zhou,Fang Wang,Luming Shen,Jing Yang
标识
DOI:10.56530/spectroscopy.fz7077a2
摘要

To produce a fast, accurate estimation for soil organic matter (SOM) by soil hyperspectral methods, we developed a novel intelligent inversion model based on multiscale fractal features combined with principal component analysis (PCA) of hyperspectral data. First, we calculated the local generalized Hurst exponent of the spectral reflectivity by multiscale multifractal detrended fluctuation analysis (MMA) while determining the sensitive spectral bands. PCA was employed to access the maximum principal component features of the sensitive bands used as the model input. Finally, two intelligent algorithms, random forest (RF), and a support vector machine (SVM), were utilized for establishing the SOM estimation model. The soil hyperspectral data possesses the typical nature of long-range correlation, presenting distinct fractal structures at different scales and fluctuations. The sensitive bands were from 359 nm to 405 nm, and were not impacted by window fitting size. The accuracy of the models of MMA-based sensitive bands is superior to that of the original bands. The PCA processing brings additional model performance improvement. The MMA-based models combined with RF is recommended for SOM estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
花凉发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
3秒前
嘿嘿完成签到,获得积分10
3秒前
3秒前
无极微光应助123456采纳,获得20
4秒前
Rowena完成签到,获得积分10
4秒前
5秒前
霜序十六完成签到,获得积分10
6秒前
欧石楠完成签到 ,获得积分10
9秒前
9秒前
爆米花应助好运连连采纳,获得10
9秒前
Darcy完成签到,获得积分10
10秒前
yeah发布了新的文献求助10
11秒前
谢某某102097完成签到,获得积分10
11秒前
12秒前
12秒前
dingyuhong发布了新的文献求助10
12秒前
12秒前
不安的米老鼠完成签到,获得积分10
13秒前
灵巧问筠完成签到,获得积分10
15秒前
17秒前
18秒前
xia发布了新的文献求助10
19秒前
壮观若南发布了新的文献求助10
19秒前
monica发布了新的文献求助10
20秒前
21秒前
好运连连发布了新的文献求助10
22秒前
浮浮世世发布了新的文献求助10
23秒前
24秒前
wanci应助蓝莓妮儿采纳,获得10
25秒前
潘2333完成签到,获得积分20
25秒前
大方的航空完成签到,获得积分10
26秒前
26秒前
苏silence完成签到,获得积分10
26秒前
浮游应助春风不语采纳,获得10
28秒前
米诺发布了新的文献求助10
29秒前
在水一方应助XingZiBa采纳,获得10
29秒前
29秒前
yeah发布了新的文献求助30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571900
求助须知:如何正确求助?哪些是违规求助? 4657057
关于积分的说明 14719219
捐赠科研通 4597883
什么是DOI,文献DOI怎么找? 2523461
邀请新用户注册赠送积分活动 1494260
关于科研通互助平台的介绍 1464374