Molecular simulation for food protein–ligand interactions: A comprehensive review on principles, current applications, and emerging trends

分子动力学 计算机科学 配体(生物化学) 纳米技术 生化工程 食物蛋白 分子力学 化学 计算生物学 计算化学 生物 材料科学 生物化学 工程类 受体
作者
Zihan Jin,Zihao Wei
出处
期刊:Comprehensive Reviews in Food Science and Food Safety [Wiley]
卷期号:23 (1): 1-29 被引量:13
标识
DOI:10.1111/1541-4337.13280
摘要

Abstract In recent years, investigations on molecular interaction mechanisms between food proteins and ligands have attracted much interest. The interaction mechanisms can supply much useful information for many fields in the food industry, including nutrient delivery, food processing, auxiliary detection, and others. Molecular simulation has offered extraordinary insights into the interaction mechanisms. It can reflect binding conformation, interaction forces, binding affinity, key residues, and other information that physicochemical experiments cannot reveal in a fast and detailed manner. The simulation results have proven to be consistent with the results of physicochemical experiments. Molecular simulation holds great potential for future applications in the field of food protein–ligand interactions. This review elaborates on the principles of molecular docking and molecular dynamics simulation. Besides, their applications in food protein–ligand interactions are summarized. Furthermore, challenges, perspectives, and trends in molecular simulation of food protein–ligand interactions are proposed. Based on the results of molecular simulation, the mechanisms of interfacial behavior, enzyme‐substrate binding, and structural changes during food processing can be reflected, and strategies for hazardous substance detection and food flavor adjustment can be generated. Moreover, molecular simulation can accelerate food development and reduce animal experiments. However, there are still several challenges to applying molecular simulation to food protein–ligand interaction research. The future trends will be a combination of international cooperation and data sharing, quantum mechanics/molecular mechanics, advanced computational techniques, and machine learning, which contribute to promoting food protein–ligand interaction simulation. Overall, the use of molecular simulation to study food protein–ligand interactions has a promising prospect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助liz采纳,获得10
1秒前
摆哥发布了新的文献求助10
2秒前
陈乐宁2024发布了新的文献求助30
2秒前
111发布了新的文献求助10
2秒前
wanci应助鸭鸭采纳,获得10
3秒前
我是老大应助迷你的颖采纳,获得10
4秒前
andy完成签到,获得积分10
4秒前
5秒前
5秒前
科研通AI2S应助zzz2193采纳,获得10
6秒前
瀚森驳回了Yziii应助
6秒前
6秒前
科研通AI2S应助重要的道之采纳,获得20
6秒前
6秒前
6秒前
8秒前
闪闪的绮波完成签到,获得积分10
9秒前
华仔应助正直凌文采纳,获得20
10秒前
如寄完成签到 ,获得积分10
10秒前
黄雪峰发布了新的文献求助10
11秒前
11秒前
12秒前
老麦完成签到,获得积分10
12秒前
北石化发布了新的文献求助100
12秒前
12秒前
科研通AI2S应助cc采纳,获得10
13秒前
ALUCK完成签到,获得积分10
13秒前
嘟嘟发布了新的文献求助10
13秒前
13秒前
今后应助大意的乐菱采纳,获得30
13秒前
乐乐应助野原向日葵采纳,获得10
14秒前
15秒前
15秒前
15秒前
15秒前
一颗药顽完成签到,获得积分10
16秒前
陈平安发布了新的文献求助10
16秒前
皮不可发布了新的文献求助10
17秒前
科研通AI2S应助stop here采纳,获得10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135616
求助须知:如何正确求助?哪些是违规求助? 2786482
关于积分的说明 7777675
捐赠科研通 2442483
什么是DOI,文献DOI怎么找? 1298583
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847