Active Learning for Handling Missing Data

缺少数据 计算机科学 人工智能 机器学习
作者
Alaa Tharwat,Wolfram Schenck
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3352279
摘要

Recently, the massive growth of IoT devices and Internet data, which are widely used in many applications, including industry and healthcare, has dramatically increased the amount of free unlabeled data collected. However, this unlabeled data is useless if we want to learn supervised machine learning models. The expensive and time-consuming cost of labeling makes the problem even more challenging. Here, the active learning (AL) technique provides a solution by labeling small but highly informative and representative data, which guarantees a high degree of generalizability over space and improves classification performance with data we have never seen before. The task is more difficult when the active learner has no predefined knowledge, such as initial training data, and when the obtained data is incomplete (i.e., contains missing values). In previous studies, the missing data should first be imputed. Then, the active learner selects from the available unlabeled data, regardless of whether the points were originally observed or imputed. However, selecting inaccurate imputed data points would negatively affect the active learner and prevent it from selecting informative and/or representative points, thus reducing the overall classification performance of the prediction models. This motivated us to introduce a novel query selection strategy that accounts for imputation uncertainty when querying new points. For this purpose, we first introduce a novel multiple imputation method that considers feature importance in selecting the most promising feature groups for missing values estimation. This multiple imputation method provides the ability to quantify the imputation uncertainty of each imputed data point. Furthermore, in each of the two phases of the proposed active learner (exploration and exploitation), imputation uncertainty is taken into account to reduce the probability of selecting points with high imputation uncertainty. We tested the effectiveness of the proposed active learner on different binary and multiclass datasets with different missing rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡沫完成签到,获得积分10
刚刚
1秒前
2秒前
小云杉应助CC采纳,获得10
3秒前
3秒前
4秒前
高挑的孤云完成签到,获得积分20
4秒前
jiabaoyu发布了新的文献求助20
5秒前
5秒前
郝老头完成签到,获得积分10
5秒前
科目三应助冷酷新柔采纳,获得10
6秒前
活力的彩虹完成签到 ,获得积分10
6秒前
YY发布了新的文献求助10
6秒前
Brandy完成签到,获得积分10
7秒前
Orange应助槿炀采纳,获得10
7秒前
7秒前
sxy发布了新的文献求助10
7秒前
酷波er应助Micale采纳,获得10
7秒前
living笑白发布了新的文献求助10
7秒前
田様应助yangyl采纳,获得10
8秒前
8秒前
8秒前
力量发布了新的文献求助10
9秒前
Jae完成签到 ,获得积分10
9秒前
自然的诗翠完成签到,获得积分10
9秒前
llll完成签到,获得积分10
9秒前
正直的松鼠完成签到 ,获得积分10
9秒前
9秒前
wanci应助无辜的星月采纳,获得10
9秒前
9秒前
10秒前
星河完成签到,获得积分10
10秒前
11秒前
11秒前
白皮憨憨完成签到,获得积分10
11秒前
12秒前
12秒前
槿炀完成签到,获得积分20
13秒前
13秒前
深情安青应助力量采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016711
求助须知:如何正确求助?哪些是违规求助? 3556869
关于积分的说明 11322988
捐赠科研通 3289588
什么是DOI,文献DOI怎么找? 1812514
邀请新用户注册赠送积分活动 888100
科研通“疑难数据库(出版商)”最低求助积分说明 812121