Active Learning for Handling Missing Data

缺少数据 计算机科学 人工智能 机器学习
作者
Alaa Tharwat,Wolfram Schenck
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3352279
摘要

Recently, the massive growth of IoT devices and Internet data, which are widely used in many applications, including industry and healthcare, has dramatically increased the amount of free unlabeled data collected. However, this unlabeled data is useless if we want to learn supervised machine learning models. The expensive and time-consuming cost of labeling makes the problem even more challenging. Here, the active learning (AL) technique provides a solution by labeling small but highly informative and representative data, which guarantees a high degree of generalizability over space and improves classification performance with data we have never seen before. The task is more difficult when the active learner has no predefined knowledge, such as initial training data, and when the obtained data is incomplete (i.e., contains missing values). In previous studies, the missing data should first be imputed. Then, the active learner selects from the available unlabeled data, regardless of whether the points were originally observed or imputed. However, selecting inaccurate imputed data points would negatively affect the active learner and prevent it from selecting informative and/or representative points, thus reducing the overall classification performance of the prediction models. This motivated us to introduce a novel query selection strategy that accounts for imputation uncertainty when querying new points. For this purpose, we first introduce a novel multiple imputation method that considers feature importance in selecting the most promising feature groups for missing values estimation. This multiple imputation method provides the ability to quantify the imputation uncertainty of each imputed data point. Furthermore, in each of the two phases of the proposed active learner (exploration and exploitation), imputation uncertainty is taken into account to reduce the probability of selecting points with high imputation uncertainty. We tested the effectiveness of the proposed active learner on different binary and multiclass datasets with different missing rates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HAL完成签到,获得积分10
刚刚
淡淡从阳完成签到,获得积分10
刚刚
1秒前
1秒前
英俊的铭应助自信的叫兽采纳,获得10
1秒前
SR4完成签到,获得积分10
2秒前
2秒前
2秒前
Owen应助踏实幻巧采纳,获得10
2秒前
小昊完成签到 ,获得积分10
3秒前
3秒前
4秒前
5秒前
OJL完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
青柠发布了新的文献求助10
6秒前
敏感绯完成签到,获得积分10
7秒前
7秒前
迅速如柏完成签到,获得积分10
7秒前
7秒前
7秒前
田様应助爱上人家四月采纳,获得10
8秒前
王土豆完成签到,获得积分10
8秒前
1101592875应助无头的小米采纳,获得10
8秒前
机灵花生完成签到,获得积分10
9秒前
刻苦靳发布了新的文献求助10
9秒前
Lucas应助zz采纳,获得10
9秒前
轻念完成签到,获得积分10
9秒前
333发布了新的文献求助10
10秒前
某某完成签到,获得积分10
10秒前
dd发布了新的文献求助10
10秒前
11秒前
wl9529完成签到,获得积分10
12秒前
12秒前
清风伴夏发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551982
求助须知:如何正确求助?哪些是违规求助? 4636809
关于积分的说明 14645565
捐赠科研通 4578578
什么是DOI,文献DOI怎么找? 2511030
邀请新用户注册赠送积分活动 1486209
关于科研通互助平台的介绍 1457502