亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Active Learning for Handling Missing Data

缺少数据 计算机科学 人工智能 机器学习
作者
Alaa Tharwat,Wolfram Schenck
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3352279
摘要

Recently, the massive growth of IoT devices and Internet data, which are widely used in many applications, including industry and healthcare, has dramatically increased the amount of free unlabeled data collected. However, this unlabeled data is useless if we want to learn supervised machine learning models. The expensive and time-consuming cost of labeling makes the problem even more challenging. Here, the active learning (AL) technique provides a solution by labeling small but highly informative and representative data, which guarantees a high degree of generalizability over space and improves classification performance with data we have never seen before. The task is more difficult when the active learner has no predefined knowledge, such as initial training data, and when the obtained data is incomplete (i.e., contains missing values). In previous studies, the missing data should first be imputed. Then, the active learner selects from the available unlabeled data, regardless of whether the points were originally observed or imputed. However, selecting inaccurate imputed data points would negatively affect the active learner and prevent it from selecting informative and/or representative points, thus reducing the overall classification performance of the prediction models. This motivated us to introduce a novel query selection strategy that accounts for imputation uncertainty when querying new points. For this purpose, we first introduce a novel multiple imputation method that considers feature importance in selecting the most promising feature groups for missing values estimation. This multiple imputation method provides the ability to quantify the imputation uncertainty of each imputed data point. Furthermore, in each of the two phases of the proposed active learner (exploration and exploitation), imputation uncertainty is taken into account to reduce the probability of selecting points with high imputation uncertainty. We tested the effectiveness of the proposed active learner on different binary and multiclass datasets with different missing rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助玛琳卡迪马采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
CodeCraft应助科研通管家采纳,获得10
28秒前
大模型应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
43秒前
48秒前
Perry完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
wangfaqing942完成签到 ,获得积分10
1分钟前
冬去春来完成签到 ,获得积分10
1分钟前
华仔应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
酥脆炸鸡排完成签到,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Jenny完成签到,获得积分10
5分钟前
5分钟前
JamesPei应助老宇126采纳,获得10
5分钟前
6分钟前
6分钟前
老宇126发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
Dave完成签到 ,获得积分10
6分钟前
iorpi完成签到,获得积分10
6分钟前
7分钟前
缺粥完成签到 ,获得积分10
7分钟前
7分钟前
天真彩虹完成签到 ,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
可爱的大白菜真实的钥匙完成签到 ,获得积分10
8分钟前
8分钟前
yexu发布了新的文献求助10
8分钟前
安详秀发布了新的文献求助30
8分钟前
8分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3322676
求助须知:如何正确求助?哪些是违规求助? 2953927
关于积分的说明 8567146
捐赠科研通 2631437
什么是DOI,文献DOI怎么找? 1439892
科研通“疑难数据库(出版商)”最低求助积分说明 667269
邀请新用户注册赠送积分活动 653785