Active Learning for Handling Missing Data

缺少数据 计算机科学 人工智能 机器学习
作者
Alaa Tharwat,Wolfram Schenck
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3352279
摘要

Recently, the massive growth of IoT devices and Internet data, which are widely used in many applications, including industry and healthcare, has dramatically increased the amount of free unlabeled data collected. However, this unlabeled data is useless if we want to learn supervised machine learning models. The expensive and time-consuming cost of labeling makes the problem even more challenging. Here, the active learning (AL) technique provides a solution by labeling small but highly informative and representative data, which guarantees a high degree of generalizability over space and improves classification performance with data we have never seen before. The task is more difficult when the active learner has no predefined knowledge, such as initial training data, and when the obtained data is incomplete (i.e., contains missing values). In previous studies, the missing data should first be imputed. Then, the active learner selects from the available unlabeled data, regardless of whether the points were originally observed or imputed. However, selecting inaccurate imputed data points would negatively affect the active learner and prevent it from selecting informative and/or representative points, thus reducing the overall classification performance of the prediction models. This motivated us to introduce a novel query selection strategy that accounts for imputation uncertainty when querying new points. For this purpose, we first introduce a novel multiple imputation method that considers feature importance in selecting the most promising feature groups for missing values estimation. This multiple imputation method provides the ability to quantify the imputation uncertainty of each imputed data point. Furthermore, in each of the two phases of the proposed active learner (exploration and exploitation), imputation uncertainty is taken into account to reduce the probability of selecting points with high imputation uncertainty. We tested the effectiveness of the proposed active learner on different binary and multiclass datasets with different missing rates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好完成签到 ,获得积分10
刚刚
顾天与发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
PG发布了新的文献求助10
2秒前
2秒前
善学以致用应助江阳宏采纳,获得10
2秒前
豆豆完成签到,获得积分10
3秒前
探索小新完成签到,获得积分10
3秒前
3秒前
洞拐俩幺完成签到,获得积分10
3秒前
脑洞疼应助Philce采纳,获得10
4秒前
4秒前
4秒前
俭朴尔竹发布了新的文献求助10
4秒前
4秒前
5秒前
不羁的风发布了新的文献求助10
5秒前
5秒前
弥漫迟完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
风中悟空发布了新的文献求助10
6秒前
美满的如松关注了科研通微信公众号
6秒前
6秒前
something0316发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
粉面菜蛋发布了新的文献求助10
7秒前
活力太兰发布了新的文献求助10
8秒前
在水一方应助PG采纳,获得10
8秒前
9秒前
LI发布了新的文献求助10
9秒前
怡然的夏之完成签到,获得积分10
9秒前
念安发布了新的文献求助10
9秒前
大个应助toutou采纳,获得30
10秒前
10秒前
华仔应助动听的谷秋采纳,获得10
10秒前
王肖宁发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760503
求助须知:如何正确求助?哪些是违规求助? 5525145
关于积分的说明 15397760
捐赠科研通 4897376
什么是DOI,文献DOI怎么找? 2634169
邀请新用户注册赠送积分活动 1582215
关于科研通互助平台的介绍 1537621