Highly selective iron-based catalysts derived from Al-containing MIL-53 for CO2 hydrogenation to light olefins

催化作用 化学 有机化学
作者
Hannarong Pitayachinchot,Prasert Reubroycharoen,Pattarapan Prasassarakich,Chawalit Ngamcharussrivichai
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:: 112061-112061 被引量:1
标识
DOI:10.1016/j.jece.2024.112061
摘要

Hydrogenation of CO2 is a catalytic reaction for effectively utilizing CO2 as a carbon feedstock for the production of valuable chemicals. Fe-based catalysts are well known as potential catalysts for CO2 hydrogenation to produce C2+ hydrocarbons via carbon–carbon bond formation. In this work, MIL-53(Al) was used as a support material for preparing Fe-based catalysts through incipient wetness impregnation, followed by calcination. The effects of iron loading content, type of second metals added (Cu, Co, or Zn), and the addition of a K promoter on the CO2 conversion and hydrocarbon products distribution were investigated. The MIL-53(Al)-derived Fe-based catalysts were characterized by a high dispersion of iron oxide nanoparticles even though the Fe loading level was as high as 58 wt%. The catalytic performance of the obtained Fe-based catalysts was strongly related to the crystallite size of iron oxide, which determined the type and amount of surface-active iron species. The bimetallic catalysts with Zn addition enhanced the C2+ hydrocarbons formation, whereas the C2–C4 olefins yield was increased remarkably by adding K as a catalyst promoter for facile generation of iron carbides and altering CO2 and H2 adsorption on the catalyst surface. 0.15K-0.1Zn-58%FeAlMIL-53 was a potential catalyst for producing light olefins via the CO2 hydrogenation, where the desired olefins selectivity of 40.4% was achieved at 36.0% conversion and an olefin-to-paraffin ratio of 6.3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nPol2L发布了新的文献求助10
刚刚
xiaotaiyang发布了新的文献求助10
刚刚
123发布了新的文献求助10
1秒前
Orange应助xss采纳,获得10
1秒前
2秒前
北极星发布了新的文献求助10
2秒前
科研通AI2S应助ChenYX采纳,获得50
2秒前
yuanjingnan完成签到,获得积分10
3秒前
zho发布了新的文献求助10
3秒前
wcy发布了新的文献求助10
4秒前
Hello应助zyy采纳,获得10
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
景辣条应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得20
4秒前
慕青应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
7秒前
太阳雨发布了新的文献求助10
7秒前
7秒前
123完成签到,获得积分10
8秒前
10秒前
10秒前
辛勤钧完成签到,获得积分10
11秒前
12秒前
12秒前
白的狗与黑的猫应助yyd采纳,获得30
15秒前
zhangbh1990完成签到 ,获得积分10
16秒前
dai发布了新的文献求助10
17秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136624
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782625
捐赠科研通 2443718
什么是DOI,文献DOI怎么找? 1299386
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954