摩擦电效应
纳米发生器
莫来石
材料科学
复合材料
智能材料
陶瓷
压电
作者
Ping Zhang,Yuting Ma,Baocheng Liu,Honghao Zhang
标识
DOI:10.1088/1361-665x/ad21b4
摘要
Abstract Polyvinyl alcohol (PVA) has good biocompatibility, a simple fabrication process, and environmental protection, which is very suitable for the production of triboelectric nanogenerator (TENG) applied to smart home control. However, the output performance of the TENG composed of PVA and PDMS films is not high. Previous research has explored the enhancement of PVA-based TENG performance by doping with conductive materials to modify the dielectric properties of PVA composite films. Nevertheless, this approach is associated with issues of high production costs and energy consumption. This work prepared a mullite/PVA composite material TENG (MP-TENG), the introduction of mullite induced interfacial polarization in the composite film. This effect resulted in the appearance of polarization centers, thereby enhancing the charge-sensing capability of the composite film. Consequently, the triboelectric output performance of the MP-TENG was improved. MP-TENGs with different amounts of mullite fiber doping were prepared, and the maximum output performance was obtained when the doping level reached 3 wt%. At this concentration, the composite film exhibited an open-circuit voltage of 70.89 V and a short-circuit current of 2.45 μ A. An enhancement of 1.78 and 1.71 times was achieved with respect to the pure PVA-TENG, respectively. In addition, MP-TENG exhibited excellent sensing characteristics, a smart home control system was designed in conjunction with a hardware circuit, which captured hand motions and encoded them to generate binary codes to control the on/off state of the indoor home.
科研通智能强力驱动
Strongly Powered by AbleSci AI