Attention-guided generator with dual discriminator GAN for real-time video anomaly detection

鉴别器 计算机科学 异常检测 发电机(电路理论) 编码器 噪音(视频) 人工智能 水准点(测量) 帧(网络) 解码方法 计算机视觉 实时计算 图像(数学) 算法 功率(物理) 电信 探测器 物理 大地测量学 量子力学 地理 操作系统
作者
Rituraj Singh,Anikeit Sethi,Krishanu Saini,Sumeet Saurav,Aruna Tiwari,Sanjay Kumar Singh
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:131: 107830-107830 被引量:9
标识
DOI:10.1016/j.engappai.2023.107830
摘要

Detecting anomalies in videos presents a significant challenge in the field of video surveillance. The primary goal is identifying and detecting uncommon actions or events within a video sequence. The difficulty arises from the limited availability of video frames depicting anomalies and the ambiguous definition of anomaly. Based on extensive applications of Generative Adversarial Networks (GANs), which consist of a generator and a discriminator network, we propose an Attention-guided Generator with Dual Discriminator GAN (A2D-GAN) for real-time video anomaly detection (VAD). The generator network uses an encoder–decoder architecture with a multi-stage self-attention added to the encoder and multi-stage channel attention added to the decoder. The framework uses adversarial learning from noise and video frame reconstruction to enhance the generalization of the generator network. Also, of the dual discriminator in A2D-GAN, one discriminates between the reconstructed video frame and the real video frame, while the other discriminates between the reconstructed noise and the real noise. Exhaustive experiments and ablation studies on four benchmark video anomaly datasets, namely UCSD Peds, CUHK Avenue, ShanghaiTech, and Subway, demonstrate the effectiveness of the proposed A2D-GAN compared to other state-of-the-art methods. The proposed A2D-GAN model is robust and can detect anomalies in videos in real-time. The source code to replicate the results of the proposed A2D-GAN model is available at https://github.com/Rituraj-ksi/A2D-GAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郝瑞之发布了新的文献求助10
1秒前
橘灯发布了新的文献求助10
1秒前
1秒前
1秒前
Feng完成签到,获得积分10
2秒前
2秒前
ED应助鹅帮逮采纳,获得10
2秒前
4秒前
小二郎应助孟欣玥采纳,获得10
4秒前
yangmengyuan完成签到 ,获得积分10
4秒前
研友_Z1WvKL发布了新的文献求助10
4秒前
慕青应助直率沂采纳,获得10
5秒前
平常叫兽发布了新的文献求助10
5秒前
6秒前
搜集达人应助沉静从蓉采纳,获得10
6秒前
轻松的如冰完成签到,获得积分10
6秒前
6秒前
夏天完成签到,获得积分10
7秒前
7秒前
小赵发布了新的文献求助10
7秒前
8秒前
8秒前
旷野发布了新的文献求助10
8秒前
爆米花应助嘤嘤嘤采纳,获得30
8秒前
所所应助cldg采纳,获得10
8秒前
大个应助郝瑞之采纳,获得10
9秒前
普里克先森完成签到 ,获得积分10
9秒前
nana发布了新的文献求助10
9秒前
somin应助lq采纳,获得10
9秒前
9秒前
Billy应助liuting采纳,获得30
9秒前
科研小白发发发完成签到,获得积分20
9秒前
apeng给apeng的求助进行了留言
10秒前
酷波er应助吃鱼的猫采纳,获得10
10秒前
10秒前
10秒前
李李发布了新的文献求助10
11秒前
cherlie应助鹅帮逮采纳,获得10
11秒前
NexusExplorer应助HAO采纳,获得10
11秒前
禾苗完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958909
求助须知:如何正确求助?哪些是违规求助? 3505121
关于积分的说明 11122699
捐赠科研通 3236612
什么是DOI,文献DOI怎么找? 1788911
邀请新用户注册赠送积分活动 871431
科研通“疑难数据库(出版商)”最低求助积分说明 802794