已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning a physics-based filter attachment for hyperspectral imaging with RGB cameras

高光谱成像 RGB颜色模型 人工智能 计算机视觉 滤波器(信号处理) 计算机科学 模式识别(心理学) 遥感 地质学
作者
Maoqing Zhang,Lizhi Wang,Lin Zhu,Hua Huang
出处
期刊:Neurocomputing [Elsevier]
卷期号:580: 127474-127474
标识
DOI:10.1016/j.neucom.2024.127474
摘要

Countless RGB cameras are ubiquitously distributed in our daily lives, serving to perceive and depict the diverse colors of the world. Reconstructing hyperspectral images (HSI) from these trichromatic cameras emerges as a promising solution to address the limitations of existing, costly hyperspectral imaging systems. The performance of HSI reconstruction relies heavily on the camera spectral response (CSR). Thus, designing a better CSR and putting it into practice is the critical issue for RGB-based HSI reconstruction. However, the CSR curves designed in the existing works are overly random, making them challenging to manufacture directly. Additionally, the designed CSR curves require modifications to the camera hardware, resulting in the loss of RGB imaging functionality. In this paper, we propose a hyperspectral imaging system, which involves enhancing the CSR curve of existing RGB cameras and preserving RGB imaging functionality by adding a learnable physics-based spectral filter. Specifically, we first parameterize the spectral filter transmittance as a function of the filter thicknesses, based on the physical constraints of the multilayer interference principle. Then, we propose a joint optimization framework in which the thicknesses of the filter and the hyperspectral reconstruction network are optimized. In this manner, the thicknesses of the filter are obtained and used to manufacture the filter directly. Finally, we construct a prototype and verify the benefits of our spectral filter design method through experiments including both synthetic data and real images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助Hh采纳,获得10
1秒前
Suchen完成签到 ,获得积分10
4秒前
5秒前
5秒前
7秒前
11秒前
kaifeiQi发布了新的文献求助10
12秒前
ding应助安安采纳,获得30
14秒前
15秒前
16秒前
17秒前
_十三发布了新的文献求助30
17秒前
AM发布了新的文献求助10
21秒前
明明发布了新的文献求助10
22秒前
贰鸟应助早睡早起身体好采纳,获得20
24秒前
今后应助polarisblue采纳,获得10
25秒前
Q123ba叭完成签到 ,获得积分10
25秒前
科研通AI2S应助AM采纳,获得10
28秒前
111完成签到,获得积分20
29秒前
zhong发布了新的文献求助10
30秒前
zhong发布了新的文献求助10
30秒前
zhong发布了新的文献求助10
31秒前
zhong发布了新的文献求助10
31秒前
快乐完成签到 ,获得积分10
33秒前
Bamboo完成签到 ,获得积分10
37秒前
mmmm应助jdjd采纳,获得10
37秒前
鬼见愁完成签到,获得积分10
38秒前
万能图书馆应助明明采纳,获得10
40秒前
41秒前
llnysl完成签到 ,获得积分10
43秒前
will完成签到 ,获得积分10
44秒前
希望天下0贩的0应助围城采纳,获得10
45秒前
小鱼发布了新的文献求助10
46秒前
47秒前
49秒前
49秒前
yfy完成签到 ,获得积分10
51秒前
缓慢的觅云完成签到,获得积分10
51秒前
活泼新儿发布了新的文献求助10
52秒前
polarisblue发布了新的文献求助10
56秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162121
求助须知:如何正确求助?哪些是违规求助? 2813196
关于积分的说明 7899113
捐赠科研通 2472301
什么是DOI,文献DOI怎么找? 1316428
科研通“疑难数据库(出版商)”最低求助积分说明 631305
版权声明 602142