Learning a physics-based filter attachment for hyperspectral imaging with RGB cameras

高光谱成像 RGB颜色模型 人工智能 计算机视觉 滤波器(信号处理) 计算机科学 模式识别(心理学) 遥感 地质学
作者
Zhang Mao-qing,Lizhi Wang,Lin Zhu,Hua Huang
出处
期刊:Neurocomputing [Elsevier]
卷期号:580: 127474-127474
标识
DOI:10.1016/j.neucom.2024.127474
摘要

Countless RGB cameras are ubiquitously distributed in our daily lives, serving to perceive and depict the diverse colors of the world. Reconstructing hyperspectral images (HSI) from these trichromatic cameras emerges as a promising solution to address the limitations of existing, costly hyperspectral imaging systems. The performance of HSI reconstruction relies heavily on the camera spectral response (CSR). Thus, designing a better CSR and putting it into practice is the critical issue for RGB-based HSI reconstruction. However, the CSR curves designed in the existing works are overly random, making them challenging to manufacture directly. Additionally, the designed CSR curves require modifications to the camera hardware, resulting in the loss of RGB imaging functionality. In this paper, we propose a hyperspectral imaging system, which involves enhancing the CSR curve of existing RGB cameras and preserving RGB imaging functionality by adding a learnable physics-based spectral filter. Specifically, we first parameterize the spectral filter transmittance as a function of the filter thicknesses, based on the physical constraints of the multilayer interference principle. Then, we propose a joint optimization framework in which the thicknesses of the filter and the hyperspectral reconstruction network are optimized. In this manner, the thicknesses of the filter are obtained and used to manufacture the filter directly. Finally, we construct a prototype and verify the benefits of our spectral filter design method through experiments including both synthetic data and real images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助21采纳,获得10
1秒前
小二郎应助执着的采枫采纳,获得10
2秒前
qbhkai发布了新的文献求助20
2秒前
WJT完成签到,获得积分10
2秒前
无限问寒发布了新的文献求助10
3秒前
英俊的铭应助Li采纳,获得10
3秒前
zzz完成签到 ,获得积分10
4秒前
5秒前
7秒前
8秒前
9秒前
跳跃的静曼完成签到,获得积分10
9秒前
端庄芾发布了新的文献求助10
10秒前
12秒前
wuang发布了新的文献求助10
12秒前
Euan完成签到,获得积分10
12秒前
weige完成签到,获得积分10
13秒前
16秒前
21发布了新的文献求助10
18秒前
summer发布了新的文献求助10
20秒前
21秒前
执着的采枫完成签到,获得积分10
22秒前
22秒前
不懂白完成签到 ,获得积分10
23秒前
二柱子完成签到,获得积分10
24秒前
24秒前
达不溜发布了新的文献求助10
25秒前
zls完成签到,获得积分10
26秒前
paov45关注了科研通微信公众号
28秒前
rachel03发布了新的文献求助30
29秒前
34秒前
无限问寒完成签到,获得积分10
34秒前
35秒前
38秒前
青年才俊发布了新的文献求助10
40秒前
41秒前
周三完成签到,获得积分10
42秒前
王牛牛发布了新的文献求助10
42秒前
45秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298783
求助须知:如何正确求助?哪些是违规求助? 4447268
关于积分的说明 13841970
捐赠科研通 4332744
什么是DOI,文献DOI怎么找? 2378323
邀请新用户注册赠送积分活动 1373613
关于科研通互助平台的介绍 1339188