Learning a physics-based filter attachment for hyperspectral imaging with RGB cameras

高光谱成像 RGB颜色模型 人工智能 计算机视觉 滤波器(信号处理) 计算机科学 模式识别(心理学) 遥感 地质学
作者
Zhang Mao-qing,Lizhi Wang,Lin Zhu,Hua Huang
出处
期刊:Neurocomputing [Elsevier]
卷期号:580: 127474-127474
标识
DOI:10.1016/j.neucom.2024.127474
摘要

Countless RGB cameras are ubiquitously distributed in our daily lives, serving to perceive and depict the diverse colors of the world. Reconstructing hyperspectral images (HSI) from these trichromatic cameras emerges as a promising solution to address the limitations of existing, costly hyperspectral imaging systems. The performance of HSI reconstruction relies heavily on the camera spectral response (CSR). Thus, designing a better CSR and putting it into practice is the critical issue for RGB-based HSI reconstruction. However, the CSR curves designed in the existing works are overly random, making them challenging to manufacture directly. Additionally, the designed CSR curves require modifications to the camera hardware, resulting in the loss of RGB imaging functionality. In this paper, we propose a hyperspectral imaging system, which involves enhancing the CSR curve of existing RGB cameras and preserving RGB imaging functionality by adding a learnable physics-based spectral filter. Specifically, we first parameterize the spectral filter transmittance as a function of the filter thicknesses, based on the physical constraints of the multilayer interference principle. Then, we propose a joint optimization framework in which the thicknesses of the filter and the hyperspectral reconstruction network are optimized. In this manner, the thicknesses of the filter are obtained and used to manufacture the filter directly. Finally, we construct a prototype and verify the benefits of our spectral filter design method through experiments including both synthetic data and real images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
张虹完成签到,获得积分10
1秒前
阳阳完成签到,获得积分10
1秒前
努力生活的小柴完成签到,获得积分10
2秒前
英俊的铭应助踏雪白狼采纳,获得10
2秒前
王粒伊发布了新的文献求助10
2秒前
3秒前
3秒前
gq发布了新的文献求助10
3秒前
4秒前
丘比特应助愉快之槐采纳,获得10
4秒前
Cikkky发布了新的文献求助10
5秒前
光亮的友容完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
瑾木发布了新的文献求助20
6秒前
肥鱼完成签到,获得积分10
7秒前
共享精神应助调皮帆布鞋采纳,获得10
7秒前
落后幼晴完成签到,获得积分10
7秒前
康康发布了新的文献求助10
8秒前
8秒前
咖喱给咖喱的求助进行了留言
8秒前
Amicable完成签到,获得积分20
8秒前
DTH发布了新的文献求助10
8秒前
科研通AI6应助一碗小米饭采纳,获得10
9秒前
song99完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
阿狸小尾巴完成签到,获得积分20
11秒前
12秒前
科研通AI6应助小洋采纳,获得10
12秒前
14秒前
14秒前
SheltonYang发布了新的文献求助10
15秒前
16秒前
小马不会做科研完成签到,获得积分10
16秒前
song99发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508247
求助须知:如何正确求助?哪些是违规求助? 4603532
关于积分的说明 14486019
捐赠科研通 4537643
什么是DOI,文献DOI怎么找? 2486733
邀请新用户注册赠送积分活动 1469218
关于科研通互助平台的介绍 1441580