摘要
Chapter 8 Application of Nanocellulose for Wound Dressings B.A. Aderibigbe, B.A. Aderibigbe Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape, South AfricaSearch for more papers by this author B.A. Aderibigbe, B.A. Aderibigbe Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape, South AfricaSearch for more papers by this author Book Editor(s):Mainak Mukhopadhyay, Mainak Mukhopadhyay Department of Bioscience, JIS University, West Bengal, IndiaSearch for more papers by this authorDebalina Bhattacharya, Debalina Bhattacharya Department of Microbiology, Maulana Azad College, Kolkata, IndiaSearch for more papers by this author First published: 06 February 2024 https://doi.org/10.1002/9781394172825.ch8 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Nanocellulose-based biomedical materials offer distinct properties, such as excellent biocompatibility, reduced cytotoxic effects, biodegradability, and good mechanical properties. It is affordable and readily available, making it a sustainable biomaterial for biomedical applications. One of the outstanding biomedical applications of cellulose-based materials is in the design of wound dressings. Wound healing is very complex and using an appropriate wound dressing is crucial to afford accelerated healing with reduced scar formation. There are several commercially available wound dressings; however, some of them are not biocompatible and do not promote an accelerated wound-healing process. Nanocellulose-based wound dressings exhibit excellent features that are useful for the treatment of chronic, infected, high exuding and bleeding wounds. The surfaces of nanocellulose-based biomaterials have been modified with bioactive molecules for improved cellular adhesion, proliferation, and differentiation processes that are useful in skin regeneration. Different forms of wound dressings have been prepared from nanocellulose-based biomaterials. However, the development of nanocellulose-based wound dressings is still in its infancy. There have been reports ( in vitro and in vivo ) on the efficacy of nanocellulose-based dressings for the treatment of bleeding, exuding, chronic, acute wounds, and skin regeneration. This chapter will give a comprehensive report on the different forms of nanocellulose-based wound dressings and future perspectives. References Santos , D. , Silva , U.F. , Duarte , F.A. , Bizzi , C.A. , Flores , E.M. , Mello , P.A. , Ultrasound-assisted acid hydrolysis of cellulose to chemical building blocks: Application to furfural synthesis . Ultrason. Sonochem. , 40 , 81 – 88 , 2018 . 10.1016/j.ultsonch.2017.04.034 CASPubMedWeb of Science®Google Scholar Leong , S.L. , Tiong , S.I.X. , Siva , S.P. , Ahamed , F. , Chan , C.H. , Lee , C.L. , Chew , I.M.L. , Ho , Y.K. , Morphological control of cellulose nanocrystals via sulfuric acid hydrolysis based on sustainability considerations: An overview of the governing factors and potential challenges . J. Environ. Chem. Eng. , 10 , 108145 , 2022 . 10.1016/j.jece.2022.108145 CASWeb of Science®Google Scholar Trache , D. , Tarchoun , A.F. , Derradji , M. , Hamidon , T.S. , Masruchin , N. , Brosse , N. , Hussin , M.H. , Nanocellulose: From fundamentals to advanced applications . Front. Chem. , 8 , 392 , 2020 . 10.3389/fchem.2020.00392 CASPubMedWeb of Science®Google Scholar Tarchoun , A.F. , Trache , D. , Klapötke , T.M. , Derradji , M. , Bessa , W. , Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media . Cellulose , 26 , 7635 – 7651 , 2019 . 10.1007/s10570-019-02672-x CASWeb of Science®Google Scholar Salimi , S. , Sotudeh-Gharebagh , R. , Zarghami , R. , Chan , S.Y. , Yuen , K.H. , Production of nanocellulose and its applications in drug delivery: A critical review . ACS Sustain. Chem. Eng. , 7 , 15800 – 15827 , 2019 . 10.1021/acssuschemeng.9b02744 CASWeb of Science®Google Scholar Lee , S.H. , Kim , H.J. , Kim , J.C. , Nanocellulose applications for drug delivery: A review . J. For. Environ. Sci. , 35 , 141 – 149 , 2019 . Google Scholar Copenhaver , K. , Li , K. , Wang , L. , Lamm , M. , Zhao , X. , Korey , M. , Neivandt , D. , Dixon , B. , Sultana , S. , Kelly , P. , Gramlich , W.M. , Pretreatment of lignocellulosic feedstocks for cellulose nanofibril production . Cellulose , 29 , 1 – 42 , 2022 . 10.1007/s10570-022-04580-z Web of Science®Google Scholar Naz , S. , Ali , J.S. , Zia , M. , Nanocellulose isolation characterization and applications: A journey from non-remedial to biomedical claims . Biodes. Manuf. , 2 , 187 – 212 , 2019 . 10.1007/s42242-019-00049-4 CASWeb of Science®Google Scholar Trache , D. , Nanocellulose as a promising sustainable material for biomedical applications . AIMS Mater. Sci. , 5 , 201 – 5 , 2018 . 10.3934/matersci.2018.2.201 Web of Science®Google Scholar Gatenholm , P. and Klemm , D. , Bacterial nanocellulose as a renewable material for biomedical applications . MRS Bull. , 35 , 208 – 213 , 2010 . 10.1557/mrs2010.653 CASWeb of Science®Google Scholar Sindhu , K.A. , Prasanth , R. , Thakur , V.K. , Medical applications of cellulose and its derivatives: Present and future , in: Nanocellulose Polymer Nanocomposites , pp. 437 – 477 , Scrivener Publishers , Canada , 2014 . 10.1002/9781118872246.ch16 Google Scholar Shi , C. , Wang , C. , Liu , H. , Li , Q. , Li , R. , Zhang , Y. , Liu , Y. , Shao , Y. , Wang , J. , Selection of appropriate wound dressing for various wounds . Front. Bioeng. Biotechnol. , 8 , 182 , 2020 . 10.3389/fbioe.2020.00182 PubMedWeb of Science®Google Scholar Martin , P. and Nunan , R. , Cellular and molecular mechanisms of repair in acute and chronic wound healing . Br. J. Dermatol. , 173 , 370 – 378 , 2015 . 10.1111/bjd.13954 CASPubMedWeb of Science®Google Scholar Sorg , H. , Tilkorn , D.J. , Hager , S. , Hauser , J. , Mirastschijski , U. , Skin wound healing: An update on the current knowledge and concepts . Eur. Surg. Res. , 58 , 81 – 94 , 2017 . 10.1159/000454919 PubMedWeb of Science®Google Scholar Wallace , H.A. , Basehore , B.M. , Zito , P.M. , Wound healing phases , in: StatPearls , StatPearls Publishing , Treasure Island (FL) , 2022 , PMID: 29262065. Google Scholar Almadani , Y.H. , Vorstenbosch , J. , Davison , P.G. , Murphy , A.M. , Wound healing: A comprehensive review . Semin. Plast. Surg. , 35 , 141 – 144 , 2021 . 10.1055/s-0041-1731791 PubMedWeb of Science®Google Scholar Ullah , M.W. , Rojas , O.J. , McCarthy , R.R. , Yang , G. , Nanocellulose: A multipurpose advanced functional material . Front. Bioeng. Biotechnol. , 9 , 1 – 4 , 2021 . 10.3389/fbioe.2021.738779 Web of Science®Google Scholar Gupta , A. , Kowalczuk , M. , Heaselgrave , W. , Britland , S.T. , Martin , C. , Radecka , I. , The production and application of hydrogels for wound management: A review . Eur. Polym. J. , 111 , 134 – 151 , 2019 . 10.1016/j.eurpolymj.2018.12.019 CASWeb of Science®Google Scholar Caló , E. and Khutoryanskiy , V.V. , Biomedical applications of hydrogels: A review of patents and commercial products . Eur. Polym. J. , 65 , 252 – 267 , 2015 . 10.1016/j.eurpolymj.2014.11.024 CASWeb of Science®Google Scholar Edwards , J. , Hydrogels and their potential uses in burn wound management . Br. J. Nurs. , 19 , S12 – 16 , 2010 . 10.12968/bjon.2010.19.Sup4.48419 PubMedGoogle Scholar Liu , Y. , Sui , Y. , Liu , C. , Liu , C. , Wu , M. , Li , B. , Li , Y. , A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing . Carbohydr. Polym. , 188 , 27 – 36 , 2018 . 10.1016/j.carbpol.2018.01.093 CASPubMedWeb of Science®Google Scholar Maliha , M. , Brammananth , R. , Dyson , J. , Coppel , R.L. , Werrett , M. , Andrews , P.C. , Batchelor , W. , Biocompatibility and selective antibacterial activity of a bismuth phosphinato-nanocellulose hydrogel . Cellulose , 28 , 4701 – 4718 , 2021 . 10.1007/s10570-021-03835-5 CASWeb of Science®Google Scholar Basu , A. , Heitz , K. , Strømme , M. , Welch , K. , Ferraz , N. , Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications . Carbohydr. Polym. , 181 , 345 – 350 , 2018 . 10.1016/j.carbpol.2017.10.085 CASPubMedWeb of Science®Google Scholar Patel , D.K. , Ganguly , K. , Hexiu , J. , Dutta , S.D. , Patil , T.V. , Lim , K.T. , Functionalized chitosan/spherical nanocellulose-based hydrogel with superior antibacterial efficiency for wound healing . Carbohydr. Polym. , 284 , 119202 , 2022 . 10.1016/j.carbpol.2022.119202 CASPubMedWeb of Science®Google Scholar Erdagi , S.I. , Ngwabebhoh , F.A. , Yildiz , U. , Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications . Int. J. Biol. Macromol. , 149 , 651 – 663 , 2020 . 10.1016/j.ijbiomac.2020.01.279 PubMedWeb of Science®Google Scholar Loh , E.Y. , Fauzi , M.B. , Ng , M.H. , Ng , P.Y. , Ng , S.F. , Amin , M.C. , Insight into delivery of dermal fibroblast by non-biodegradable bacterial nanocellulose composite hydrogel on wound healing . Int. J. Biol. Macromol. , 159 , 497 – 509 , 2020 . 10.1016/j.ijbiomac.2020.05.011 CASPubMedWeb of Science®Google Scholar Chen , X.Y. , Low , H.R. , Loi , X.Y. , Merel , L. , Mohd Cairul Iqbal , M.A. , Fabrication and evaluation of bacterial nanocellulose/poly (acrylic acid)/ graphene oxide composite hydrogel: Characterizations and biocompatibility studies for wound dressing . J. Biomed. Mater. Res. B Appl. Biomater. , 107 , 2140 – 2151 , 2019 . 10.1002/jbm.b.34309 CASPubMedWeb of Science®Google Scholar Basu , A. , Hong , J. , Ferraz , N. , Hemocompatibility of Ca2+-crosslinked nanocellulose hydrogels: Toward efficient management of hemostasis . Macromol. Biosci. , 17 , 1700236 , 2017 . 10.1002/mabi.201700236 CASWeb of Science®Google Scholar Shahriari-Khalaji , M. , Hong , S. , Hu , G. , Ji , Y. , Hong , F.F. , Bacterial nanocellulose-enhanced alginate double-network hydrogels cross-linked with six metal cations for antibacterial wound dressing . Polymers , 12 , 2683 , 2020 . 10.3390/polym12112683 CASPubMedWeb of Science®Google Scholar Ren , L. , He , G. , Zhou , Y. , Dai , J. , Miao , W. , Ouyang , C. , Liu , J. , Chen , G. , Hydrogel based on nanocellulose/polydopamine/gelatin are used for the treatment of MRSA infected wound with broad-spectrum antibacterial, antioxidant property and tissue suitability . Biomater. Sci. , 10 , 3174 – 3187 , 2022 . 10.1039/D2BM00157H CASPubMedWeb of Science®Google Scholar Afjoul , H. , Shamloo , A. , Kamali , A. , Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro , in vivo study . Mater. Sci. Eng. C , 113 , 110957 , 2020 . 10.1016/j.msec.2020.110957 CASPubMedWeb of Science®Google Scholar Cheng , H. , Xiao , D. , Tang , Y. , Wang , B. , Feng , X. , Lu , M. , Vancso , G.J. , Sui , X. , Sponges with janus character from nanocellulose: Preparation and applications in the treatment of hemorrhagic wounds . Adv. Healthc. Mater. , 9 , 1901796 , 2020 . 10.1002/adhm.201901796 CASPubMedWeb of Science®Google Scholar Sultana , T. , Hossain , M. , Rahaman , S. , Kim , Y.S. , Gwon , J.G. , Lee , B.T. , Multi-functional nanocellulose-chitosan dressing loaded with antibacterial Lawsone for rapid hemostasis and cutaneous wound healing . Carbohydr. Polym. , 272 , 118482 , 2021 . 10.1016/j.carbpol.2021.118482 CASPubMedWeb of Science®Google Scholar Zheng , L. , Wang , Q. , Zhang , Y.S. , Zhang , H. , Tang , Y. , Zhang , Y. , Zhang , W. , Zhang , X. , A hemostatic sponge derived from skin secretion of Andrias davidianus and nanocellulose . Chem. Eng. J. , 416 , 129136 , 2021 . 10.1016/j.cej.2021.129136 CASWeb of Science®Google Scholar Yuan , H. , Chen , L. , Hong , F.F. , A biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound healing . ACS Appl. Mater. Interfaces , 12 , 3382 – 3392 , 2019 . 10.1021/acsami.9b17732 Web of Science®Google Scholar Balla , E.D. , Bikiaris , N.D. , Nanaki , S.G. , Papoulia , C. , Chrissafis , K. , Klonos , P.A. , Kyritsis , A. , Kostoglou , M. , Zamboulis , A. , Papageorgiou , G.Z. , Chloramphenicol loaded sponges based on PVA/nanocellulose nanocomposites for topical wound delivery . J. Compos. Sci. , 5 , 208 , 2021 . 10.3390/jcs5080208 CASGoogle Scholar Xiao , Y. , Rong , L. , Wang , B. , Mao , Z. , Xu , H. , Zhong , Y. , Zhang , L. , Sui , X. , A light-weight and high-efficacy antibacterial nanocellulose-based sponge via covalent immobilization of gentamicin . Carbohydr. Polym. , 200 , 595 – 601 , 2018 . 10.1016/j.carbpol.2018.07.091 CASPubMedWeb of Science®Google Scholar Long , L.Y. , Hu , C. , Liu , W. , Wu , C. , Lu , L. , Yang , L. , Wang , Y.B. , Microfibrillated cellulose-enhanced carboxymethyl chitosan/oxidized starch sponge for chronic diabetic wound repair . Biomater. Adv. , 135 , 112669 , 2022 . 10.1016/j.msec.2022.112669 Google Scholar Ambekar , R.S. and Kandasubramanian , B. , Advancements in nanofibers for wound dressing: A review . Eur. Polym. J. , 11 , 304 – 309 , 2019 . 10.1016/j.eurpolymj.2019.05.020 Google Scholar Sylvester , M.A. , Amini , F. , Tan , C.K. , Electrospun nanofibers in wound healing . Mater. Today: Proc. , 29 , 1 – 6 , 2020 . 10.1016/j.matpr.2020.05.686 CASGoogle Scholar Silva , N.H. , Garrido-Pascual , P. , Moreirinha , C. , Almeida , A. , Palomares , T. , Alonso-Varona , A. , Vilela , C. , Freire , C.S. , Multifunctional nanofibrous patches composed of nanocellulose and lysozyme nanofibers for cutaneous wound healing . Int. J. Biol. Macromol. , 165 , 1198 – 210 , 2020 . 10.1016/j.ijbiomac.2020.09.249 CASPubMedWeb of Science®Google Scholar Shahriari-Khalaji , M. , Hu , G. , Chen , L. , Cao , Z. , Andreeva , T. , Xiong , X. , Krastev , R. , Hong , F.F. , Functionalization of aminoalkylsilane-grafted bacterial nanocellulose with ZnO-NPs-doped pullulan electrospun nanofibers for multifunctional wound dressing . ACS Biomater. Sci. Eng. , 7 , 3933 – 3946 , 2021 . 10.1021/acsbiomaterials.1c00444 CASPubMedWeb of Science®Google Scholar Ribeiro , A.S. , Costa , S.M. , Ferreira , D.P. , Calhelha , R.C. , Barros , L. , Stojković , D. , Soković , M. , Ferreira , I.C. , Fangueiro , R. , Chitosan/nanocellulose electrospun fibers with enhanced antibacterial and antifungal activity for wound dressing applications . React. Funct. Polym. , 159 , 104808 , 2021 . 10.1016/j.reactfunctpolym.2020.104808 CASWeb of Science®Google Scholar Ardila , N. , Medina , N. , Arkoun , M. , Heuzey , M.C. , Ajji , A. , Panchal , C.J. , Chitosan–bacterial nanocellulose nanofibrous structures for potential wound dressing applications . Cellulose , 23 , 3089 – 3104 , 2016 . 10.1007/s10570-016-1022-y CASWeb of Science®Google Scholar Wang , L. , Wang , C. , Wang , L. , Zhang , Q. , Wang , Y. , Xia , X. , Emulsion electrospun polylactic acid/apocynum venetum nanocellulose nanofiber membranes with controlled sea buckthorn extract release as a drug delivery system . Text. Res. J. , 91 , 1046 – 1055 , 2021 . 10.1177/0040517520970171 CASWeb of Science®Google Scholar Wang , L. , Wang , C. , Zhang , Q. , Liu , J. , Xia , X. , Comparison of morphological, structural and antibacterial properties of different Apocynum venetum poly (lactic acid)/nanocellulose nanofiber films . Text. Res. J. , 90 , 593 – 605 , 2020 . 10.1177/0040517519873868 CASWeb of Science®Google Scholar Subha , V. , Ranu , A. , Shankar , A. , Kirubanandan , S. , Satheeshkumar , E. , Suresh , S. , Pugazhendhi , A. , Ilangovan , R. , Functionalization of spray coated cellulose nanofiber sheet with montmorillonite (MMT) and silver nanoparticles (AgNPs) to biomedical nanocomposite as wound regeneration scaffold . Prog. Org. Coat. , 166 , 106782 , 2022 . 10.1016/j.porgcoat.2022.106782 CASWeb of Science®Google Scholar Dhivya , S. , Padma , V.V. , Santhini , E. , Wound dressings–A review . BioMedicine , 5 , 1 – 5 , 2015 . 10.7603/s40681-015-0022-9 PubMedGoogle Scholar Lungu , A. , Cernencu , A.I. , Dinescu , S. , Balahura , R. , Mereuta , P. , Costache , M. , Syverud , K. , Stancu , I.C. , Iovu , H. , Nanocellulose-enriched hydrocolloid-based hydrogels designed using a Ca2+ free strategy based on citric acid . Mater. Des. , 197 , 109200 , 2021 . 10.1016/j.matdes.2020.109200 CASWeb of Science®Google Scholar Kong , D. , Zhang , Q. , You , J. , Cheng , Y. , Hong , C. , Chen , Z. , Jiang , T. , Hao , T. , Adhesion loss mechanism based on carboxymethyl cellulose-filled hydrocolloid dressings in physiological wounds environment . Carbohydr. Polym. , 235 , 115953 , 2020 . 10.1016/j.carbpol.2020.115953 CASPubMedWeb of Science®Google Scholar Collado-Boira , E. , Boldo-Roda , P. , Bernat-Adell , M.D. , Morar , K.G. , Ayora , A.F. , Medina , P.S. , Effectiveness of semiocclusive sodium carboxymethyl cellulose fibers and hydrocolloid dressings for irritant peristomal dermatitis: A case series . Adv. Skin Wound Care , 34 , 493 – 497 , 2021 . 10.1097/01.ASW.0000767336.91651.67 PubMedWeb of Science®Google Scholar Weller , C.D. , Team , V. , Sussman , G. , First-line interactive wound dressing update: A comprehensive review of the evidence . Front. Pharmacol. , 11 , 1 – 13 , 2020 . 10.3389/fphar.2020.00155 PubMedWeb of Science®Google Scholar Abdollahi , S. and Raoufi , Z. , Gelatin/Persian gum/bacterial nanocellulose composite films containing Frankincense essential oil and Teucrium polium extract as a novel and bactericidal wound dressing . J. Drug Deliv. Sci. Technol. , 72 , 103423 , 2022 . 10.1016/j.jddst.2022.103423 CASWeb of Science®Google Scholar Taheri , P. , Jahanmardi , R. , Koosha , M. , Abdi , S. , Physical, mechanical and wound healing properties of chitosan/gelatin blend films containing tannic acid and/or bacterial nanocellulose . Int. J. Biol. Macromol. , 154 , 421 – 432 , 2020 . 10.1016/j.ijbiomac.2020.03.114 CASPubMedWeb of Science®Google Scholar Fu , L. , Zhou , P. , Zhang , S. , Yang , G. , Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation . Mater. Sci. Eng. C , 33 , 2995 – 3000 , 2013 . 10.1016/j.msec.2013.03.026 CASPubMedWeb of Science®Google Scholar Jaberifard , F. , Ghorbani , M. , Arsalani , N. , Mostafavi , H. , A novel insoluble film based on crosslinked-starch with gelatin containing ZnO-loaded halloysite nanotube and bacterial nanocellulose for wound healing applications . Appl. Clay Sci. , 230 , 106667 , 2022 . 10.1016/j.clay.2022.106667 CASWeb of Science®Google Scholar Akhavan-Kharazian , N. and Izadi-Vasafi , H. , Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications . Int. J. Biol. Macromol. , 133 , 881 – 891 , 2019 . 10.1016/j.ijbiomac.2019.04.159 CASPubMedWeb of Science®Google Scholar Riccio , B.V.F. , Klosowski , A.B. , Prestes , E. , de Sousa , T.B. , de Assunção Morais , L.C. , Lemes , B.M. , Beltrame , F.L. , Campos , P.M. , Ferrari , P.C. , Chitosan/ nanocellulose-based bionanocomposite films for controlled betamethasone and silver sulfadiazine delivery . J. Appl. Polym. Sci. , 138 , 50468 , 2021 . 10.1002/app.50468 CASWeb of Science®Google Scholar Nezhad-Mokhtari , P. , Asadi , N. , Rahmani Del Bakhshayesh , A. , Milani , M. , Gama , M. , Ghorbani , M. , Akbarzadeh , A. , Honey-loaded reinforced film based on bacterial nanocellulose/gelatin/guar gum as an effective antibacterial wound dressing . J. Biomed. Nanotechnol. , 18 , 2010 – 2021 , 2022 . 10.1166/jbn.2022.3368 CASWeb of Science®Google Scholar de Lima , T.A.D.M. , de Lima , G.G. , Chee , B.S. , Henn , J.G. , Cortese , Y.J. , Matos , M. , Helm , C.V. , Magalhães , W.L. , Nugent , M.J. , Characterization of gels and films produced from Pinhão seed coat nanocellulose as a potential use for wound healing dressings and screening of its compounds towards antitumour effects . Polymers , 14 , 2776 , 2022 . 10.3390/polym14142776 PubMedWeb of Science®Google Scholar Claro , F.C. , Jordão , C. , de Viveiros , B.M. , Isaka , L.J.E. , Villanova Junior , J.A. , Magalhães , W.L.E. , Low cost membrane of wood nanocellulose obtained by mechanical defibrillation for potential applications as wound dressing . Cellulose , 27 , 10765 – 10779 , 2020 . 10.1007/s10570-020-03129-2 CASWeb of Science®Google Scholar Yuan , H. , Chen , L. , Hong , F.F. , Evaluation of wet nanocellulose membranes produced by different bacterial strains for healing full-thickness skin defects . Carbohydr. Polym. , 285 , 119218 , 2022 . 10.1016/j.carbpol.2022.119218 CASPubMedWeb of Science®Google Scholar Sampaio , L.M. , Padrão , J. , Faria , J. , Silva , J.P. , Silva , C.J. , Dourado , F. , Zille , A. , Laccase immobilization on bacterial nanocellulose membranes: Antimicrobial, kinetic and stability-properties . Carbohydr. Polym. , 145 , 1 – 12 , 2016 . 10.1016/j.carbpol.2016.03.009 CASPubMedWeb of Science®Google Scholar Ju , S.Y. , Yu , H.L. , Ji , L. , Wang , K. , Jiang , J.X. , Preparation and characterization of bacterial nanocellulose-based composite membranes . Sci. Adv. Mater. , 12 , 802 – 809 , 2020 . 10.1166/sam.2020.3742 CASWeb of Science®Google Scholar Fonseca , D.F. , Carvalho , J.P. , Bastos , V. , Oliveira , H. , Moreirinha , C. , Almeida , A. , Silvestre , A.J. , Vilela , C. , Freire , C.S. , Antibacterial multi-layered nanocellulose-based patches loaded with dexpanthenol for wound healing applications . Nanomaterials , 10 , 2469 , 2020 . 10.3390/nano10122469 CASPubMedWeb of Science®Google Scholar Piaia , L. , Pittella , C.Q.P. , Souza , S.S.D. , Berti , F.V. , Porto , L.M. , Incorporation of Aloe vera extract in bacterial nanocellulose membranes . Polímeros , 32 , 1 – 8 , 2022 . 10.1590/0104-1428.210062 Google Scholar Coelho , G.A. , Magalhães , M.A.B. , Matioski , A. , Ribas-Filho , J.M. , Magalhães , W.L.E. , Claro , F.C. , Ramos , R.K. , Camargo , T.M.S.D. , Malafaia , O. , Pine nanocellulose and bacterial nanocellulose dressings are similar in the treatment of second-degree burn? Experimental study in rats . ABCD. Arq. Bras. Cir. Dig. (São Paulo) , 33 , 1 – 7 , 2020 . Google Scholar Smandri , A. , Nordin , A. , Hwei , N.M. , Chin , K.Y. , Abd Aziz , I. , Fauzi , M.B. , Natural 3D-printed bioinks for skin regeneration and wound healing: A systematic review . Polymers , 12 , 1 – 19 , 2020 . 10.3390/polym12081782 Web of Science®Google Scholar Tsegay , F. , Elsherif , M. , Butt , H. , Smart 3D printed hydrogel skin wound bandages: A review . Polymers , 14 , 1 – 36 , 2022 . 10.3390/polym14051012 Web of Science®Google Scholar Miguel , S.P. , Cabral , C.S. , Moreira , A.F. , Correia , I.J. , Production and characterization of a novel asymmetric 3D printed construct aimed for skin tissue regeneration . Colloids Surf. B , 181 , 994 – 1003 , 2019 . 10.1016/j.colsurfb.2019.06.063 CASPubMedWeb of Science®Google Scholar Rees , A. , Powell , L.C. , Chinga-Carrasco , G. , Gethin , D.T. , Syverud , K. , Hill , K.E. , Thomas , D.W. , 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications . BioMed. Res. Int. , 2015 , 1 – 7 , 2015 . 10.1155/2015/925757 Web of Science®Google Scholar Xu , C. , Molino , B.Z. , Wang , X. , Cheng , F. , Xu , W. , Molino , P. , Bacher , M. , Su , D. , Rosenau , T. , Willför , S. , Wallace , G. , 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application . J. Mater. Chem. B , 6 , 7066 – 7075 , 2018 . 10.1039/C8TB01757C CASPubMedWeb of Science®Google Scholar Rosendahl , J. , Zarna , C. , Håkansson , J. , Chinga-Carrasco , G. , Gene-expression analysis of human fibroblasts affected by 3D-printed carboxylated nanocellulose constructs . Bioengineering , 10 , 1 – 16 , 2023 . 10.3390/bioengineering10010121 Web of Science®Google Scholar Xu , W. , Molino , B.Z. , Cheng , F. , Molino , P.J. , Yue , Z. , Su , D. , Wang , X. , Willfor , S. , Xu , C. , Wallace , G.G. , On low-concentration inks formulated by nanocellulose assisted with gelatin methacrylate (GelMA) for 3D printing toward wound healing application . ACS Appl. Mater. Interfaces , 11 , 8838 – 8848 , 2019 . 10.1021/acsami.8b21268 CASPubMedWeb of Science®Google Scholar Dehkordi , N.K. , Minaiyan , M. , Talebi , A. , Akbari , V. , Taheri , A. , Nanocrystalline cellulose–hyaluronic acid composite enriched with GM-CSF loaded chitosan nanoparticles for enhanced wound healing . Biomed. Mater. , 14 , 035003 , 2019 . 10.1088/1748-605X/ab026c CASPubMedWeb of Science®Google Scholar Yuan , H. , Chen , L. , Hong , F.F. , Homogeneous and efficient production of a bacterial nanocellulose-lactoferrin-collagen composite under an electric field as a matrix to promote wound healing . Biomater. Sci. , 9 , 930 – 41 , 2021 . 10.1039/D0BM01553A CASPubMedWeb of Science®Google Scholar Yang , M. , Ward , J. , Choy , K.L. , Nature-inspired bacterial cellulose/methylglyoxal (BC/MGO) nanocomposite for broad-spectrum antimicrobial wound dressing . Macromol. Biosci. , 20 , 1 – 7 , 2020 . 10.1002/mabi.202000070 CASWeb of Science®Google Scholar Vilela , C. , Oliveira , H. , Almeida , A. , Silvestre , A.J. , Freire , C.S. , Nanocellulose-based antifungal nanocomposites against the polymorphic fungus Candida albicans . Carbohydr. Polym. , 217 , 207 – 216 , 2019 . 10.1016/j.carbpol.2019.04.046 CASPubMedWeb of Science®Google Scholar Sun , F. , Nordli , H.R. , Pukstad , B. , Gamstedt , E.K. , Chinga-Carrasco , G. , Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions . J. Mech. Behav. Biomed. Mater. , 69 , 377 – 384 , 2017 . 10.1016/j.jmbbm.2017.01.049 CASPubMedWeb of Science®Google Scholar Poonguzhali , R. , Basha , S.K. , Kumari , V.S. , Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application . Int. J. Biol. Macromol. , 105 , 111 – 120 , 2017 . 10.1016/j.ijbiomac.2017.07.006 CASPubMedWeb of Science®Google Scholar Ulker , Z. and Erkey , C. , An emerging platform for drug delivery: Aerogel based systems . J. Control. Release , 177 , 51 – 63 , 2014 . 10.1016/j.jconrel.2013.12.033 CASPubMedWeb of Science®Google Scholar Saini , A. , Yadav , C. , Sethi , S.K. , Xue , B.L. , Xia , Y. , Li , K. , Manik , G. , Li , X. , Microdesigned nanocellulose-based flexible antibacterial aerogel architectures impregnated with bioactive Cinnamomum cassia . ACS Appl. Mater. Interfaces , 13 , 4 , 4874 – 85 , 2021 Jan 19. 10.1021/acsami.0c20258 CASPubMedWeb of Science®Google Scholar Ghafari , R. , Fabrication and characterization of novel bilayer scaffold from nanocellulose based aerogel for skin tissue engineering applications . Int. J. Biol. Macromol. , 136 , 796 – 803 , 2019 . 10.1016/j.ijbiomac.2019.06.104 CASPubMedWeb of Science®Google Scholar Holzer , J.C. , Tiffner , K. , Kainz , S. , Reisenegger , P. , de Mattos , I.B. , Funk , M. , Lemarchand , T. , Laaff , H. , Bal , A. , Birngruber , T. , Kotzbeck , P. , A novel human ex-vivo burn model and the local cooling effect of a bacterial nanocellulose-based wound dressing . Burns , 46 , 8 , 1924 – 1932 , 2020 . 10.1016/j.burns.2020.06.024 PubMedWeb of Science®Google Scholar Bakhshpour , M. , Idil , N. , Perçin , I. , Denizli , A. , Biomedical applications of polymeric cryogels . Appl. Sci. , 9 , 1 – 22 , 2019 . 10.3390/app9030553 Google Scholar Ghafari , R. , Jonoobi , M. , Naijian , F. , Ashori , A. , Mekonnen , T.H. , Taheri , A.R. , Fabrication and characterization of bilayer scaffolds-nanocellulosic cryogels-for skin tissue engineering by co-culturing of fibroblasts and keratinocytes . Int. J. Biol. Macromol. , 223 , 100 – 7 , 2022 . 10.1016/j.ijbiomac.2022.10.281 CASPubMedWeb of Science®Google Scholar Cattelaens , J. , Turco , L. , Berclaz , L.M. , Huelsse , B. , Hitzl , W. , Vollkommer , T. , Bodenschatz , K.J. , The impact of a nanocellulose-based wound dressing in the management of thermal injuries in children: Results of a retrospective evaluation . Life , 10 , 1 – 11 , 2020 . 10.3390/life10090212 Google Scholar Luca-Pozner , V. , Nischwitz , S.P. , Conti , E. , Lipa , G. , Ghezal , S. , Luze , H. , Funk , M. , Remy , H. , Qassemyar , Q. , The use of a novel burn dressing out of bacterial nanocellulose compared to the French standard of care in paediatric 2nd degree burns–a retrospective analysis . Burns , 48 , 1472 – 80 , 2022 . 10.1016/j.burns.2021.11.019 CASPubMedWeb of Science®Google Scholar Portal , O. , Clark , W.A. , Levinson , D.J. , Microbial cellulose wound dressing in the treatment of nonhealing lower extremity ulcers . Wounds , 21 , 1 – 3 , 2009 . PubMedWeb of Science®Google Scholar bionext , https://www.bennetthealth.net/bionext/ . Accessed 13 February 2023. Google Scholar PROMOGRAN PRISMA™ Wound Balancing , https://www.acelity.com/healthcare-professionals/global-product-catalog/catalog/promogran-prisma-wound-balancing-matrix . Accessed 13 February 2023. Google Scholar Frankel , V.H. , Serafica , G.C. , Damien , C.J. , Development and testing of a novel biosynthesized XCell for treating chronic wounds . Surg. Technol. Int. , 12 , 27 – 33 , 2004 . PubMedGoogle Scholar He , W. , Wu , J. , Xu , J. , Mosselhy , D.A. , Zheng , Y. , Yang , S. , Bacterial cellulose: Functional modification and wound healing applications . Adv. Wound Care , 10 , 623 – 40 , 2021 . 10.1089/wound.2020.1219 Google Scholar de Amorim , J.D. , da Silva Junior , C.J. , de Medeiros , A.D. , do Nascimento , H.A. , Sarubbo , M. , de Medeiros , T.P. , Costa , A.F. , Sarubbo , L.A. , Bacterial cellulose as a versatile biomaterial for wound dressing application . Molecules , 27 , 1 – 25 , 2022 . 10.3390/molecules27175580 Web of Science®Google Scholar Čolić , M. , Tomić , S. , Bekić , M. , Immunological aspects of nanocellulose . Immunol. Lett. , 222 , 80 – 9 , 2020 . 10.1016/j.imlet.2020.04.004 CASPubMedWeb of Science®Google Scholar Bacakova , L. , Pajorova , J. , Bacakova , M. , Skogberg , A. , Kallio , P. , Kolarova , K. , Svorcik , V. , Versatile application of nanocellulose: From industry to skin tissue engineering and wound healing . Nanomaterials , 9 , 1 – 39 , 2019 . 10.3390/nano9020164 Web of Science®Google Scholar Nanocellulose: A Biopolymer for Biomedical Applications ReferencesRelatedInformation