Unsupervised deep learning approach for structural anomaly detection using probabilistic features

异常检测 自编码 人工智能 概率逻辑 支持向量机 计算机科学 模式识别(心理学) 深度学习 特征提取 超球体 结构健康监测 数据挖掘 特征(语言学) 机器学习 工程类 语言学 哲学 结构工程
作者
Hua‐Ping Wan,Yi-Kai Zhu,Yaozhi Luo,Michael D. Todd
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:2
标识
DOI:10.1177/14759217241226804
摘要

Civil structures may deteriorate during their service life due to degradation or damage imposed by natural hazards such as earthquakes, wind, and impact. Structural performance anomaly detection is essential to provide an early warning of structural degradation limit states in order to prevent potential catastrophic failure. Data-driven machine learning approaches have been widely used for this, due to their capability in capturing features sensitive to damage-induced anomalies from structural health monitoring (SHM) data, assuming that such data are available. Although machine learning models have been used, many are challenged by the vast operational and environmental variability that can corrupt SHM data and by (typically) strongly correlated information from different sensors in the SHM data. This paper proposes an unsupervised deep learning approach for the detection of structural anomaly based on a deep convolutional variational autoencoder (DCVAE) for feature extraction coupled with support vector data description (SVDD) for anomaly detection. The proposed DCVAE-SVDD method has several appealing strengths. First, the variational latent encoding is used to capture the features of monitoring data through a probability distribution. The integration of the Kullback–Leibler divergence in the loss function provides accurate estimation of the probability distributions. Second, the DCVAE designed with convolutional and deconvolutional operations utilizes the correlation among multisensor data to avoid loss of correlation features and achieve better performance in feature extraction. Third, the SVDD is utilized to create a minimum-volume hypersphere that contains the anomaly-sensitive statistical features of the state. The hypersphere accurately separates anomaly-sensitive statistical features of reference states of structure from the anomalous ones. A computational frame model and a laboratory grandstand model are used to evaluate the performance of the proposed method for detecting structural anomaly. The results demonstrate the superiority of the proposed DCVAE-SVDD in detection accuracy over the other commonly used structural anomaly detection methods (deep autoencoder combined with SVDD autoregressive model with one-class support vector machine, and principal component analysis).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘的柠檬完成签到 ,获得积分10
刚刚
boyue完成签到,获得积分20
3秒前
希望天下0贩的0应助xbb采纳,获得10
3秒前
3秒前
5秒前
所所应助果冻儿采纳,获得10
5秒前
之星君完成签到,获得积分10
5秒前
6秒前
请叫我风吹麦浪应助liugm采纳,获得10
7秒前
李健应助都是采纳,获得10
8秒前
9秒前
10秒前
10秒前
田様应助xxx采纳,获得10
10秒前
AsininM发布了新的文献求助10
11秒前
12秒前
Superman完成签到,获得积分10
13秒前
北风歌应助小元采纳,获得10
14秒前
14秒前
君璃璃呀发布了新的文献求助10
14秒前
大个应助阿木采纳,获得10
16秒前
Akim应助不想剪短发采纳,获得10
16秒前
16秒前
17秒前
17秒前
留胡子的如松完成签到,获得积分20
18秒前
18秒前
19秒前
owldan完成签到,获得积分10
20秒前
zc关注了科研通微信公众号
20秒前
202281800001完成签到,获得积分10
21秒前
xxx发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
24秒前
OVERLXRD发布了新的文献求助10
24秒前
木子完成签到,获得积分10
25秒前
风中如松完成签到 ,获得积分10
25秒前
NexusExplorer应助大海之滨采纳,获得10
27秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434062
求助须知:如何正确求助?哪些是违规求助? 3031257
关于积分的说明 8941535
捐赠科研通 2719231
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689418
邀请新用户注册赠送积分活动 685548