褐藻糖胶
奥沙利铂
癌症研究
肿瘤微环境
胰腺癌
癌症
医学
生物
结直肠癌
内科学
肿瘤细胞
多糖
生物化学
作者
Zhenzhen Deng,Suo Qishan,Quanbin Zhang,Jing Wang,Yue Yang,Lihua Geng,Ning Wu
标识
DOI:10.1016/j.biopha.2024.116360
摘要
Chemotherapy remains the cornerstone of pancreatic cancer treatment. However, the dense interstitial and immunosuppressive microenvironment frequently render the ineffective anti-tumor activity of chemotherapeutic agents. Macrophages play a key role in the tumor immunomodulation. In this study, we found that low molecular weight of fucoidan (LF2) directly regulated the differentiation of mononuclear macrophages into the CD86+ M1 phenotype. LF2 significantly upregulated the expressions of M1 macrophage-specific cytokines, including iNOS, IL-6, TNFα and IL-12. LF2 modulated macrophage phenotypic transformation through activation of TLR4-NFκB pathway. Furthermore, we observed that LF2 enhanced the pro-apoptotic activity of oxaliplatin (OXA) in vitro by converting macrophages to a tumoricidal M1 phenotype. Meanwhile, LF2 increased intratumoral M1 macrophage infiltration and ameliorated the immunosuppressed tumor microenvironment, which in turn enhanced the anti-pancreatic ductal adenocarcinoma (PDAC) activity of OXA in vivo. Taken together, our results suggested that LF2 could act as a TLR4 agonist targeting macrophages and has a synergistic effect against PDAC when combined with OXA.
科研通智能强力驱动
Strongly Powered by AbleSci AI